Lập phương trình đường thẳng đi qua hai điểm M(\(-\dfrac{2}{3}\);-7) và N(2;1)
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
giúp/mik/mik/đang/cần/gấp/ạ
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c) Lập phương trình đường thẳng (d) đi qua M(3; 5) và/vg/goc với đường thẳng (d’) có phương trình y = 2x
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
c)
(d) vuông góc với (d') : y = 2x
=> (d) có dạng : y = -2x + b
(d) đi qua M (3,5) :
5 = (-2) . 3 + b
=> b = 10
(d) : y = -2x + 10
d)
Gọi : hàm số có dạng : y = ax + b
Hàm số đi qua điểm A ( 1,2) , B(2,1) nên :
\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
e)
(d) đi qua gốc tọa độ O :
=> d : y = ax
(d) đi qua điểm A(1;2) nên :
2 = a * 1
=> a = 2
(d) : y = 2x
Bài 4.
a) Lập phương trình đường thẳng (d) đi qua điểm M (-1; 3) và có hệ số góc bằng 2.
b) Lập phương trình đường thẳng (d) đi qua M(3; 5) và song song với đường thẳng (d’) có phương trình y = 2x
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
d) Tìm a, b để đồ thị hàm số đi qua điểm A(1; 2) và B(2;1)
e) Lập phương trình đường thẳng đi qua gốc toạ độ O và điểm A(1; 2)
f) Lập phương trình đường thẳng (d) đi qua M(2; -1) và vuông góc với đường thẳng (d’) có phương trình: y = −1 2 x +3
Trong mặt phẳng Oxy, lập phương trình đường thẳng d đi qua điểm A(-2; 3) và cách đều hai điểm M(-1;1); N(2;-3)
d cách đều MN khi nó thỏa mãn 1 trong 2 trường hợp: d song song MN hoặc d đi qua trung điểm MN
TH1: d song song MN
\(\overrightarrow{MN}=\left(3;-4\right)\Rightarrow d\) nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow4x+3y-1=0\)
TH2: d đi qua trung điểm MN
Gọi P là trung điểm MN \(\Rightarrow P\left(\dfrac{1}{2};-1\right)\Rightarrow\overrightarrow{AP}=\left(\dfrac{5}{2};-4\right)=\dfrac{1}{2}\left(5;-8\right)\)
\(\Rightarrow d\) nhận (8;5) là 1 vtpt
Phương trình d:
\(8\left(x+2\right)+5\left(y-3\right)=0\Leftrightarrow8x+5y+1=0\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x+3y-1=0\\8x+5y+1=0\end{matrix}\right.\)
Lập phương trình đường thẳng đi qua điểm M(5;-3) và cắt hai trục toạ độ tại 2 điểm A và B sao cho M là trung điểm của AB
do A và B lần lượt nằm trên trục Ox ; Oy nên tọa độ của chúng có dạng :
A( XA ; 0 ) và B( 0 ; YB )
\(\left\{{}\begin{matrix}x_A+x_B=2x_M\\y_A+y_B=2y_M\end{matrix}\right.\) \(\rightarrow\) \(\left\{{}\begin{matrix}y_A=10\\y_B=-6\end{matrix}\right.\)
suy ra phương trình đường thẳng AB là :
\(\dfrac{x}{10}+\dfrac{y}{-6}=1\)
hay \(3x-5y-30=0\)
Lập phương trình đường thẳng đi qua điểm M(5;-3) và cắt hai trục toạ độ tại 2 điểm A và B sao cho M là trung điểm của AB