d cách đều MN khi nó thỏa mãn 1 trong 2 trường hợp: d song song MN hoặc d đi qua trung điểm MN
TH1: d song song MN
\(\overrightarrow{MN}=\left(3;-4\right)\Rightarrow d\) nhận (4;3) là 1 vtpt
Phương trình d:
\(4\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow4x+3y-1=0\)
TH2: d đi qua trung điểm MN
Gọi P là trung điểm MN \(\Rightarrow P\left(\dfrac{1}{2};-1\right)\Rightarrow\overrightarrow{AP}=\left(\dfrac{5}{2};-4\right)=\dfrac{1}{2}\left(5;-8\right)\)
\(\Rightarrow d\) nhận (8;5) là 1 vtpt
Phương trình d:
\(8\left(x+2\right)+5\left(y-3\right)=0\Leftrightarrow8x+5y+1=0\)
Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x+3y-1=0\\8x+5y+1=0\end{matrix}\right.\)