Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tth_new
Xem chi tiết
Nguyễn Huy Hoàng
4 tháng 1 2020 lúc 9:40

hack hay sao

Khách vãng lai đã xóa
Nguyễn Huy Hoàng
4 tháng 1 2020 lúc 9:40

chứng minh ngắn là làm tắt

Khách vãng lai đã xóa
tth_new
4 tháng 1 2020 lúc 9:43

Nguyễn Huy Hoàng thế you làm tắt xem có được 2-3 dòng không:) 

Khách vãng lai đã xóa
titanic
Xem chi tiết
Full Moon
3 tháng 11 2018 lúc 19:22

Đặt x = a + b; y = ab thì: 
BĐt  tương đương:

\(x^2-2y+\frac{\left(1+y\right)^2}{x^2}\ge2\)

\(\Leftrightarrow x^2\left(x^2-2y\right)+\left(1+y\right)^2-2x^2\ge0\)

\(\Leftrightarrow x^4-2x^2y+y^2+2y+1-2x^2\ge0\)

\(\Leftrightarrow\left(x^2-y-1\right)^2\ge0\left(lđ\right)\)

Đến đây bạn tự kết luận nha

Kiệt Nguyễn
13 tháng 4 2020 lúc 14:20

Ta có phép biến đổi tương đương:

\(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\Leftrightarrow\frac{\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

\(\Leftrightarrow\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng với mọi a,b)

Các bđt trên tương đương với nhau nên bđt cần chứng minh đúng

Vậy \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

Khách vãng lai đã xóa
Ngọc Ánh
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 11 2016 lúc 19:56

a/ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)

Cộng theo vế :

\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

b/ \(\frac{1}{a+b}+\frac{1}{b+c}\ge\frac{4}{a+2b+c}\)

\(\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{b+2c+a}\)

\(\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{4}{c+b+2a}\)

Cộng theo vế :

\(2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)

 

Nguyễn Thanh Hiền
Xem chi tiết
kudo shinichi
5 tháng 5 2019 lúc 10:39

Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)

\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)

\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)

\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)

Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)

Đúng không ta?

kudo shinichi
5 tháng 5 2019 lúc 10:58

Sửa từ dòng số 6:

\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(t-2\right)t+1\ge0\)

\(\Leftrightarrow t^2-2t+1\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )

Dấu " = " xảy ra khi ........................

Nguyen Thi Bich Huong
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 15:54

Điều kiện là các số đôi một khác nhau:

Đặt \(\left(a+b;b+c;c+a\right)=\left(x;y;z\right)\) BĐT trở thành:

\(\frac{x^2}{\left(y-z\right)^2}+\frac{y^2}{\left(z-x\right)^2}+\frac{z^2}{\left(x-y\right)^2}\ge2\)

Bạn tham khảo ở đây:

Câu hỏi của tư mã chiêu - Toán lớp 9 | Học trực tuyến

Khách vãng lai đã xóa
tth_new
Xem chi tiết
nub
22 tháng 4 2020 lúc 20:41

Cách 3 :

\(a+b+c\ge2+abc\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge6+3abc\)

Từ điều kiện ta có thể suy ra : \(a+b+c\ge3\)

Từ đó ta có : \(6\le\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Đến đây ta cần chứng minh :     \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge\frac{2}{3}\left(a+b+c\right)\left(ab+bc+ca\right)+3abc\)

                                            \(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)(Đây là hệ quả của Cô-si)

Khách vãng lai đã xóa
Nguyễn Linh Chi
22 tháng 3 2020 lúc 11:03

Ta có: \(a^2+b^2+c^2\ge ab+bc+ac\ge3\sqrt[3]{a^2b^2+b^2c^2+c^2a^2}\)

=> \(\hept{\begin{cases}a^2+b^2+c^2\ge3\\1\ge abc\end{cases}}\)

Có:  \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3+6=9\)

=> \(a+b+c\ge3=2+1\ge2+abc\)

Khách vãng lai đã xóa
tth_new
24 tháng 3 2020 lúc 14:53

Ngoài ra: Ta cũng có bất đẳng thức trên với điều kiện \(a+b+c=ab+bc+ca\). Cách chứng minh bằng \(\text{SOS}\)tương tự như trên nhưng chỉ đổi một vài dấu :)

Ghé thăm blog em tại: tthnew's blog, cảm ơn mn!

Khách vãng lai đã xóa
Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2020 lúc 21:14
Khách vãng lai đã xóa
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
18 tháng 2 2022 lúc 10:02

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Tương tự ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Vậy ta cần chứng minh:

\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.

Khách vãng lai đã xóa
tth_new
Xem chi tiết