Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♂ Batman ♂
Xem chi tiết
Nguyễn Thị Thu
5 tháng 5 2017 lúc 5:18

Đại số lớp 7

Nguyễn Thị Thu
5 tháng 5 2017 lúc 5:18

Đại số lớp 7

Nguyễn Thị Thu
5 tháng 5 2017 lúc 5:20

Chỉ cần thay a=x, b=y, c=z thôi bn nhé

Lê Thanh Nhàn
Xem chi tiết
Lê Thanh Nhàn
13 tháng 6 2020 lúc 23:26
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Trần Đức Thắng
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
NGUUYỄN NGỌC MINH
Xem chi tiết
NGUUYỄN NGỌC MINH
Xem chi tiết
Nguyễn Nhật Minh
13 tháng 12 2015 lúc 12:19

\(VT=\frac{x^2}{x^3-xyz-2013x}+\frac{y^2}{y^3-xyz-2013y}+\frac{z^2}{z^3-xyz-2013z}\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\right]}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)=VP

 

NGUUYỄN NGỌC MINH
13 tháng 12 2015 lúc 17:43

đúng rồi ạ nhưng chỉ cần c/m đẳng thức phụ như thế này thôi ạ\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) =>\(\frac{\left(a+b\right)2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) hay \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) là xong

lý canh hy
Xem chi tiết
hoa học trò
7 tháng 1 2019 lúc 20:21

giờ nhân cả tử và mẫu mỗi phân thức vs mỗi tử của nó rồi sử dụng BDT bunhiacopxki là ra thôi bn

Đen đủi mất cái nik
8 tháng 1 2019 lúc 7:51

\(\frac{x^2}{x^3-xyz+2013x}+\frac{y^2}{y^3-xyz+2013y}+\frac{z^2}{z^3-xyz+2013z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3.\left(xy+yz+zx\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+3xy+3yz+3zx\right)}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z\right)^2}=\frac{1}{x+y+z}\)

Kiệt Nguyễn
16 tháng 2 2020 lúc 7:56

\(VT=\text{Σ}_{cyc}\frac{x}{x^2-yz+2013}=\text{Σ}_{cyc}\frac{x^2}{x^3-xyz+2013x}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)(bđt Cauchy - Schwarz dạng Engel)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx+2013\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[\left(x+y+z\right)^2-3.671+2013\right]}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

(Dấu "=" xảy ra khi x = y = z = \(\frac{\sqrt{2013}}{3}\))

Khách vãng lai đã xóa
Suzanna Dezaki
Xem chi tiết