Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuphuong
Xem chi tiết
vu son tung
7 tháng 9 2016 lúc 21:24

x4-y4=j,tu nghi,de ma

Đặng Khánh Ngọc
Xem chi tiết
Trần Việt Linh
31 tháng 8 2016 lúc 21:20

a) Biến đổi vế trái ta có:

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1=VP\)

=>đpcm

b)Sai đề phải là \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)

Biến đổi vế trái ta có:

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4\\ =x^4-y^4=VP\)

=>đpcm

Shenkai
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Nguyễn Ngọc Lộc
20 tháng 7 2020 lúc 16:18

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

Nguyễn Lê Phước Thịnh
20 tháng 7 2020 lúc 16:24

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

Lý Bảo Thy
Xem chi tiết
Hoàng Diệu Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2020 lúc 10:15

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

Võ Thị Mai Thơm
Xem chi tiết
Ngọc Vĩ
17 tháng 5 2016 lúc 20:04

a/ Vế trái = x3 + x2 + x - x2 - x - 1 = x3 - 1 (= vế phải)

b/ hình như đề sai

Ngọc Vĩ
17 tháng 5 2016 lúc 20:26

b/ Vế trái = x4 + x3y + x2y2 + xy3 - x3y - x2y2 - xy3 - y4 = x4 - y4 (= vế phải)

Võ Thị Mai Thơm
17 tháng 5 2016 lúc 20:12

b)(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4

Võ Thị Mai Thơm
Xem chi tiết
thang
18 tháng 5 2016 lúc 20:45

cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n

-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5

Thắng Nguyễn
18 tháng 5 2016 lúc 18:56

1,a) (x-1)(x^2+x+1)=x^3-1

VT=x3+x2+x-x2-x-1

=(x3-1)+(x2-x2)+(x-x)

=x3-1+0+0

=x3-1=VP (dpcm)

tương tự a

l҉o҉n҉g҉ d҉z҉
18 tháng 5 2016 lúc 19:00

1,a) (x-1)(x^2+x+1)=x^3-1

VT=x3+x2+x-x2-x-1

=(x3-1)+(x2-x2)+(x-x)

=x3-1+0+0

=x3-1=VP (dpcm)

khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải