Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Quốc Anh
Xem chi tiết
Phạm Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2022 lúc 11:56

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

lê nguyễn tấn phát
Xem chi tiết
Trần Nguyễn Quốc Anh
13 tháng 2 2016 lúc 10:16

Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Nguyễn Tuấn Minh
13 tháng 2 2016 lúc 10:17

p là snt > 3 nên p=3k+1 hoặc 3k+2

Xét p=3k+1, p+4=3k+1+4=3k+5( thỏa mãn là snt theo đề bài)

Xét p=3k+2, p+4=3k+2+4=3k+6=3(k+2) là hợp số, loại

Vậy p=3k+1, p+8=3k+1+8=3k+9=3(k+3) là hợp số ( đpcm)

FC TF Gia Tộc và TFBoys...
13 tháng 2 2016 lúc 10:17

  vì p là số nguyên tố và p > 3 nên số nguyên tố p có dạng:3k+1 ,3k +2 ( k thuộc N*) 
- Nếu p=3k +2 thì p+4 =3k +6=3(k +3 ) =>p +4 chia hết cho 3 và p+4 >3 nên p+4 là hợp số (trái với giả thiết) 
- Nếu p=3k +1 thì p +8 = 3k +9=3(k +3) =>p+8 chia hết cho 3 và p+8 >3 nên p+8 là hợp số 
Vậy nếu số nguyên tố p có dạng p=3k +1 thì p +8 là hợp số

Đinh Hải Ngọc
Xem chi tiết
Nguyễn Thanh Hằng
16 tháng 4 2017 lúc 12:30

Do \(p\) là số nguyên tố \(>3\) nên :

\(\Rightarrow\left[{}\begin{matrix}p=6k+1\\p=6k+5\end{matrix}\right.\) \(\left(k\in N\right)\)

+) Với \(p=6k+5\) thì :

\(p+4=\left(6k+5\right)+4=6k+9⋮3\) \(\left(loại\right)\) \(\rightarrow\) Do \(p+4\) là số nguyên tố

\(\Rightarrow p=6k+1\).Vậy khi đó :

\(p+8=\left(6k+1\right)+8=6k+9⋮3\) (thỏa mãn \(p+8\) là hợp số )

\(\Rightarrowđpcm\)

~ Học tốt ~

Ruby Sweety
Xem chi tiết
Công Tùng
25 tháng 11 2017 lúc 20:20

p thuộc 1 trong 3 trường hợp:p=3k

                                           p=3k+1

                                           p=3k+2

Vì p là số nguyên tố lớn hơn 3=>p ko bằng 3k

=> p thuộc 1 trong 2 trường hợp:p=3k+1

                                                p=3k+2

Nếu p=3k+2=>p+4=3k+2+4

                            =3k+6

 Vì 3kchia hết cho 3;6 chia hết cho 3

=>p ko thể bằng 3k+2

=>p=3k+1

Với p=3k+1=>p+8=3k+1+8

                 =3k+9

Vì 3k chia hết cho 3;9 chia hết cho 3

=> p+8 là hợp số.

Tạ Kim Chi
Xem chi tiết
nguyễn thu hiền
Xem chi tiết
TẠ VĂN MINH
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Zeref Dragneel
25 tháng 11 2015 lúc 20:31

:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1.

Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

Thanh Hiền
25 tháng 11 2015 lúc 20:32

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6 
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu: 
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3) 
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn 
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn 
Vậy chỉ có 3 là thỏa mãn yêu cầu