Tìm GTNN của
\(C=-\left(-5^3\right)+\left|-y-3\right|^9+\left(x-3y\right)^8\)
Giai hệ PT bằng phương pháp cộng
a.\(\left\{{}\begin{matrix}5.\left(x+2y\right)-3.\left(x-y\right)=99\\x-3y=7x-4y-17\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}3.\left(y-5\right)+2\left(x-3\right)=0\\7.\left(x-4\right)+3\left(x+y-1\right)=14\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2.\left(x+1\right)-5\left(y+1\right)=8\\3.\left(x+1\right)-2.\left(y+1\right)=1\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}2.\left(3y+1\right)-4\left(x-1\right)=5\\5.\left(3y+1\right)-8\left(x-1\right)=9\end{matrix}\right.\)
d: =>6y+2-4x+4=5 và 15y+5-8x+8=9
=>-4x+6y=-1 và -8x+15y=-4
=>x=-3/4; y=-2/3
c: \(\Leftrightarrow\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}3y-15+2x-6=0\\7x-28+3y+3y-3=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=21\\7x+6y=45\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{19}{3}\end{matrix}\right.\)
Làm phép chia bằng cách áp dụng hằng đẳng thức:
a) \(\left(x^8-2x^4y^4+y^8\right):\left(x^2+y^2\right)\)
b) \(\left(64x^3+27\right):\left(16x^2-12x+9\right)\)
c) \(\left(x^3-9x^2+27x-27\right):\left(x^2-6x+9\right)\)
d) \(\left(x^3y^6z^9-1\right):\left(xy^2z^3-1\right)\)
a: \(=\dfrac{\left(x^4-y^4\right)^2}{x^2+y^2}=\left(x^2-y^2\right)^2\cdot\left(x^2+y^2\right)\)
b: \(=\dfrac{\left(4x+3\right)\left(16x^2-12x+9\right)}{16x^2-12x+9}=4x+3\)
a)\(\left\{{}\begin{matrix}2\left|x-6\right|+3\left|y-1\right|=5\\5\left|x-6\right|-4\left|y+1\right|=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|+17\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}4\left|x+y\right|+3\left|x-y\right|=8\\3\left|x+y\right|-5\left|x-y\right|=6\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}x^2-xy=24\\2x-3y=1\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x-4y+1=0\\xy=3\left(x+y\right)-9\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}2x+3y=5\\3x^2-y^2+2y=4\end{matrix}\right.\)
a: Đặt |x-6|=a, |y+1|=b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+3b=5\\5a-4b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
=>|x-6|=1 và |y+1|=1
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)
b: Đặt |x+y|=a, |x-y|=b
Theo đề, ta có: \(\left\{{}\begin{matrix}2a-b=19\\3a+2b=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{55}{7}\\b=-\dfrac{23}{7}\left(loại\right)\end{matrix}\right.\)
=>HPTVN
c: Đặt |x+y|=a, |x-y|=b
Theo đề ta có: \(\left\{{}\begin{matrix}4a+3b=8\\3a-5b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)
=>|x+y|=2 và x=y
=>|2x|=2 và x=y
=>x=y=1 hoặc x=y=-1
a,Cho x,y,z tm \(\left\{{}\begin{matrix}x^2+y^2+z^2=8\\x+y+z=4\end{matrix}\right.\). CM: \(-\dfrac{8}{3}\le x\le\dfrac{8}{3}\)
b, cho \(x^2+3y^2=1\). Tìm GTLN, GTNN của\(P=x-y\)
c, Cho \(P=\dfrac{x^2-\left(x-4y\right)^2}{x^2+4y^2}\left(x^2+y^2>0\right)\)
Tìm GTLN của P
\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)
Đặt \(\dfrac{x}{y}=t\)
\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)
Với \(P=0\Leftrightarrow t=2\)
Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)
\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)
Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)
\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)
Bài a hình như sai đề rồi bạn.
\(a,\text{Đặt }\left\{{}\begin{matrix}S=y+z\\P=yz\end{matrix}\right.\\ HPT\Leftrightarrow\left\{{}\begin{matrix}\left(y+z\right)^2-2yz+x^2=8\\x\left(y+z\right)+yz=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S^2-2P+x^2=8\\Sx+P=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2-2\left(4-Sx\right)+x^2=8\\P=4-Sx\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}S^2+2Sx+x^2-16=0\left(1\right)\\P=4-Sx\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left(S+x-4\right)\left(S+x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}S=-x+4\Rightarrow P=\left(x-2\right)^2\\S=-x-4\Rightarrow P=\left(x+2\right)^2\end{matrix}\right.\)
Mà y,z là nghiệm của hệ nên \(S^2-4P\ge0\Leftrightarrow\left[{}\begin{matrix}\left(4-x\right)^2\ge4\left(x-2\right)^2\\\left(-4-x\right)^2\ge4\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow-\dfrac{8}{3}\le x\le\dfrac{8}{3}\)
1/ Tìm GTNN:
a,\(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\)
b,\(\left|3x-7\right|+\left|3x+2\right|+8\)
2/ Tìm x, y:
a, \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
b,\(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
c,\(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)
Ta có: \(xy+yz+xz=2000\)
\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)
\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)
Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu
b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)
2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)
Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)
Thu gọn đơn thức, tìm bậc, hệ số, biến
A = \(x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right)
\)
B = \(\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right)\)
\(A=x^3.\left(-\dfrac{5}{4}x^2y\right).\left(\dfrac{2}{5}x^3y^4\right).\\ A=-\dfrac{1}{2}x^8y^5.\)
- Bậc: 8.
- Hệ số: \(-\dfrac{1}{2}.\)
- Biến: \(x;y.\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right).\left(xy^2\right).\left(-\dfrac{8}{9}x^2y^3\right).\\ B=\dfrac{2}{3}x^8y^9.\)
- Bậc: 9.
- Hệ số: \(\dfrac{2}{3}.\)
- Biến: \(x;y.\)
CM các biểu thức sau không phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\times\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0
thực hiện phép chia:
a) \(\left(x-y\right)^5-\left(y-x\right)^3\)
b) \(\left(3y-6x\right)^3:9\left(2x-y\right)\)
c) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:\left[5\left(x-y\right)^2\right]\)
a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]
b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2
c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5