2^2phần 2^x+y=8và 3^2.(x+y)phần 3^5y=343
Giải phương trình ( giải theo trường hợp phương trình chứa biến ở mẫu)
a) y+5 phần y2-5y - y-5 phần 2y2+10y = y+25 phần 2y2-50
b) x phần 2x-6 + x phần 2x+2 = 2x phần (x+1)(x-3)
c) 1 phần 2x+7 - 6 phần (x-3)(x+3)=-13 phần (x-3)(2x+7)
a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>30y+25=25y
=>5y=-25
=>y=-5(loại)
b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
c: =>x^2-9-6(2x+7)=-13(x+3)
=>x^2-9-12x-42+13x+39=0
=>x^2+x-6=0
=>(x+3)(x-2)=0
=>x=2(nhận) hoặc x=-3(loại)
Bài 1: Phân tích thành nhân tử 3) x ^ 2(x - 1) + 2x * (1 - x) 5) y ^ 2(x ^ 2 + y) - zx ^ 2 - zy 7) 5(x + y) ^ 2 + 15(x + y) 9) 7x(y - 4) ^ 2 - (4 - y) ^ 3; 11)(x+1)(y-2)-(2-y)^ 2 2) 5x(x - 2) - 3x ^ 2(x - 2) 4) 3x(x - 5y) - 2y(5y - x) 6) b(a - c) + 5c - 5a 8) 9x(x - y) - 10(y - x) ^ 2 10) (a - b) ^ 2 - (a + b)(b - a) 12) 2x(x - 3) + y(x - 3) + (3 - x)
bài 10 a)x/2=y/3 và 4x-3y=-2
b)2x=5y và x+y=-42
bài 11 a)x/3=y/4=z/6 và x+2y-3z=-14
b)x/5=y/6;y/8=z/7 và x=y-z=138
c)x=y/3=z/5 và 15x-5y=3z=45
dx/2=y/3;y/2=z/3 vâ x-2y+3z=19
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Phân tích các đa thức sau thành nhân tử : 14x^2y-21xy^2+28x^2y^2 x(x+y)-5x-5y 10x(x-y)-8(y-x ) (3x+1)^2 -(x+1)^2 x^3+y^3+z^3-3xyz 5x^2-10xy+5y^2-20z^2 x^3-x+3x^2y+3x^2y+3xy^2+y^3-y Mn đc lời giải chi tiết từng bước làm 1
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
1, x/-2 = y/5 và x + y = 12
2, x/3 = y/2 và 2x + 5y = 32
3, x/3 = y/3 và 2x + 4y = 28
4, x/3 = 4/16 và 3x - y = 35
8. 3x = 5y và x + y = 40
a= 1/5 x^5 y - 2/3 x^5y + x^5y tại x=-1 y=2
\(A=\left(\dfrac{1}{5}-\dfrac{2}{3}+1\right)x^5y=\dfrac{8}{15}x^5y\)
Thay x = -1 ; y = 2 ta được \(A=\dfrac{-16}{15}\)
a) 3x = 5y = 7z và x+ y + z = 10
b) 6x = 5y ; 7y = 8z và 3x + 2y + 4z = 12
c) x : y : z = 1: 2 : 3 và x\(^3\) + y\(^3\) + 2\(^3\) = 36
d) \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và 3x\(^3\) + y\(^3\) = 51
giúp mik vs rùi mik tick cho
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
1.Tính x + y :
\(\dfrac{4^x}{2^{x+y}}\) = 8 và \(\dfrac{9^{x+y}}{3^{5y}}\) = 243
2.Tìm x, biết :
a) \(\left(x-1\right)^3\) = 343
b) \(\left(x-2\right)^4\) = 4096
c) \(\left(x-4\right)^2\) = \(\left(x-4\right)^4\)
2.b,
\(\left(x-2\right)^4=4096\\ \left(x-2\right)^4=\left(\pm8\right)^4\\ \Rightarrow\left\{{}\begin{matrix}x-2=8\\x-2=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\x=-6\end{matrix}\right.\)
Vậy ...
câu c:
\(\left(x-4\right)^2=\left(x-4\right)^4\\ \Rightarrow\left\{{}\begin{matrix}x-4=0\\x-4=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
Vậy
Bài 1:Thu gọn đơn thức sau và cho biết phần hệ số,phần biến của mỗi đơn thức a)1/5xy^2 (-5xy) b)x^3 (-1/3y)1/5y^2 y c)2/a x^2 y^3 z (-x^3 yz) d)-ax (xy^3)1/4 (-by)^3 Bài 2:Tính các đơn thức sai rồi tìm bậc của đơn thức thu đc a)(-77x^2 yz) và 3/7 xy^2 z^3 b) -1/5 x^3 y^2 và -3x^3 y^4 c)(1/4xy^2) ; (1/2x^2 y^2) và -4/5yz^2 Help me đc k
Bài 1
a, 1/5xy^2(-5xy )= -x^2y^3
-hệ số :-1 biến :x^2y^3
b, x^3(-1/3y)1/5x^2y=-1/15x^5y^2
-Hệ số :-1/15, biến :x^5y^2
Bài 1:
c) Ta có: \(\dfrac{2}{a}\cdot x^2\cdot y^3\cdot z\cdot\left(-x^3yz\right)\)
\(=-\dfrac{2}{a}\cdot x^5y^4z^2\)
Hệ số là \(-\dfrac{2}{a}\)
Phần biến là: \(x^5;y^4;z^2\)