Tìm x để 1 \(\le\)\(\frac{2x+4}{x-5}\)\(\le\)3
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)
Áp dụng vào bài toán của bạn :
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)
b/ Tương tự
c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)
d/ Tương tự
e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)
f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)
Suy ra \(y\le\frac{1}{2\sqrt{2}}\)
..........................
g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)
\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)
\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)
\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)
Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)
a) Cho y = (2x + 5)(5 – x) , \(-\frac{5}{2}\) ≤ x ≤ 5 . Tìm x để y đạt GTLN
b) Cho y = (6x + 3)(5 – 2x) , \(-\frac{1}{2}\)≤ x ≤ \(\frac{5}{2}\) . Tìm x để y đạt GTLN
1) cho 2a + 5b = 7. Tìm GTLN của 3a2 + 2b2
2) cho 3a - 5b = 8. chứng minh 7a2 +1 1b2\(\ge\frac{2464}{137}\)
3) tìm GTLN của :
a)A = 3x + \(3\sqrt{3-x^2}\) với \(-\sqrt{3}\le x\le\sqrt{3}\)
b) B= (x + 3)(5 - 2x) với \(-3\le x\le\frac{5}{2}\)
c)C = (6x + 3)(5 - 2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
4) Tìm GTNN của y= \(y=\frac{x}{3}+\frac{5}{2x-1}\left(x>\frac{1}{2}\right)\)
Tìm số nguyên x biết: a) \(-4\frac{3}{5}.2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
b) \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
Áp dụng bđt cô si để tìm GTLN của các bt sau:
a) \(y=\left(x+3\right)\left(5-x\right)\) với -3≤x≤5
b) \(y=x\left(6-x\right)\) với 0≤x≤6
c) \(y=\left(x+3\right)\left(5-2x\right)\) với -3≤x≤\(\frac{5}{2}\)
d) y=(2x+5)(5-x) với \(\frac{-5}{2}\le x\le5\)
e) y=(6x+3)(5-2x) với \(\frac{-1}{2}\le x\le\frac{5}{2}\)
f) \(y=\frac{x}{x^2+2}\) với x>0
g) \(y=\frac{x^2}{\left(x^2+3\right)^3}\)
a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
Dấu "=" xảy ra khi \(x+3=5-x\Leftrightarrow x=1\)
b/ \(y=x\left(6-x\right)\le\frac{1}{4}\left(x+6-x\right)^2=9\)
\("="\Leftrightarrow x=3\)
c/ \(y=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow x=-\frac{1}{4}\)
d/ \(y=\frac{1}{2}\left(2x+5\right)\left(10-2x\right)\le\frac{1}{8}\left(2x+5+10-2x\right)^2=\frac{225}{8}\)
\("="\Leftrightarrow x=\frac{5}{4}\)
e/ \(y=3\left(2x+1\right)\left(5-2x\right)\le\frac{3}{4}\left(2x+1+5-2x\right)^2=27\)
\("="\Leftrightarrow x=1\)
f/ \(\frac{x}{x^2+2}\le\frac{x}{2\sqrt{x^2.2}}=\frac{1}{2\sqrt{2}}\)
\("="\Leftrightarrow x=\sqrt{2}\)
g/ \(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{\frac{9}{4}x^2}\right)^3}=\frac{4}{243}\)
\("="\Leftrightarrow x^2=\frac{3}{2}\Leftrightarrow x=\pm\sqrt{\frac{3}{2}}\)
Tìm số nguyên x biết:
a) \(-4\frac{3}{5}.2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
b) \(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
a) \(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{15}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le\frac{-33}{15}:\frac{21}{15}\)
=> \(-10\le x\le\frac{-11}{7}\)
=> \(x\in\left\{-10;-9,-8,-7,-6,-5,-4,-3,-2,-1\right\}\)
1.Tìm x
a, \(-\frac{23}{5}.\frac{50}{23}\le x\le-\frac{13}{5}:\frac{23}{17}\)
b,\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le-\frac{2}{3}\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
c,\(\frac{x-1}{2014}+\frac{x-2}{2013}=\frac{x-3}{2012}+\frac{x-4}{2011}\)
\(a,-\frac{4}{7}-x=\frac{3}{5}-2x\)
\(b,\frac{1}{2}-\left(\frac{1}{3}+\frac{3}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
3) tìm x
a) \((\frac{1}{8}x-\frac{3}{8}).\left(2x^2+3\right)=0\)
b) \(|\frac{5}{3}x-1|+\frac{4}{5}\le\frac{4}{5}\)
a)
\(\left(\frac{1}{8}x-\frac{3}{8}\right)\left(2x^2+3\right)=0\)
+) 1/8x - 3/8 = 0
1/8x = 3/8
x = 3
+) 2x^2 + 3 = 0
2x^2 = -3
x^2 = -3/2
mà mũ chẵn luôn lớn hơn hoặc bằng 0 => loại
b)
\(\left|\frac{5}{3}x-1\right|+\frac{4}{5}\le\frac{4}{5}\)
\(\left|\frac{5}{3}x-1\right|\le0\)
mà \(\left|\frac{5}{3}x-1\right|\ge0\forall x\)
=> 5/3x - 1 = 0
5/3x = 1
x = 3/5
Vậy,..........