(m^2 +1) x^2 -2(m+1)x+ 2m -1 =0 có hai nghiệm trái dấu
Cho phương trình
( m + 2 ) x 2 + ( 2 m + 1 ) x + 2 = 0
Xác định m để phương trình có hai nghiệm trái dấu và tổng hai nghiệm bằng -3.
Phương trình có hai nghiệm trái dấu khi và chỉ khi
suy ra m < -2.
Tổng của hai nghiệm bằng -3 khi
thỏa mãn điều kiện m < -2.
Đáp số: m = -5.
tìm m để phương trình (m^2+1)x^2 - 2(m+1)x + 2m -1=0 có 2 nghiệm trái dấu
tìm tất cả giá trị của m để `x^2 -4(m-1)x+2m-1=0` có 2 nghiệm trái dấu
Để phương trình có 2 nghiệm trái dấu thì \(a\cdot c< 0\)
=>1(2m-1)<0
=>2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
Cho phương trình x2-2(m+1)x+m2+2m=0 (1) , (với m là tham số ). Tìm các giá trị của m để phương trình (1) có hai nghiệm trái dấu
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Ta có: \(\Delta'=1>0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét: \(x_1x_2=m^2+2m\)
Để phương trình có 2 nghiệm trái dấu
\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)
Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)
Cho phương trình \(x^2-2\left(m-1\right)x-\left(2m+1\right)=0\left(1\right)\)Tìm m để phương trình có 2 nghiệm trái dấu
Pt có 2 nghiệm trái dấu
`<=>ac<0`
`<=>2m+1>0`
`<=>m> -1/2`
Để pt(1) có hai nghiệm trái dấu thì -(2m+1)<0
\(\Leftrightarrow2m+1>0\)
\(\Leftrightarrow2m>-1\)
hay \(m>-\dfrac{1}{2}\)
`x^2 -2(1-m)x-2m-5=0` . Tìm m nguyên để phương trình có 2 nghiệm trái dấu mà nghiệm dương lớn hơn giá trị tuyệt đối nghiệm âm
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{5}{2}< m< 1\)
Cho phương trình x2 - 2(m - 1)x + 2m - 5 = 0
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Tìm m để phương trình có hai nghiệm trái dấu. Khi đó hai nghiệm mang dấu gì?
c) Tìm GTLN của biểu thức A = 4x1x2 - x12 - x22.
1/Xác định tham số m sao cho phương trình
a) 2(x^2)-3(m+1)x+m^2-m-2=0 có hai nghiệm trái dấu
b) mx^2-2(m-2)x+3(m-2)=0 có hai nghiệm cùng dấu