help:
cho S=1/4+1/9+1/16+...+1/10000
Khẳng định nào đúng
A. S < 1 B. S > 1 C. S > 2 D. S<0
Tính toán
1) S = 1+2+3+4+...+n
2) S = 1*2*3...*n
3)S = 2+4+6+...+n
4)S = 1+3+5+...+n
5)S = 2*4*6...*n
6)S = 1-2+3-4+...+n
7)S = -1+2-3+4+...+n
8)S = 1+4+9+16+...+n*n
9)S = 1+9+25+...+( n mod 2 = 1)^2
10)S =4+16+...+( n mod 2 = 0)^2
11)S =5+10+15+...+ n mod 5 =0
12)S = 1+2-3+4+5-6+7+8-9...+n-(n mod 3 = 0 )
13)S = 1+2!+3!+4!...+n!
14)S =1+(1+2)+(1+2+3)+...+( tổng các số từ 1 tới )( i chạy từ 1 tới n)
15)S =1*2+2*3+4*5+...+(n-1)*n
HELP ME!
Câu 1: [1] Gọi S là tập nghiệm của phương trình ( x+2)(2x-1)(x-3) = 0. Khẳng định nào sau đây sai?
A. -2 ∈ S B. 3 ∈ S C. 2 ∈ S D. \(\dfrac{1}{2}\) ∈ S
Ta có tập nghiệm của phương trình là:
\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Tập hợp S là:
\(S=\left\{-2;\dfrac{1}{2};3\right\}\)
Lần lược các phương án:
A. \(-2\in S\) (đúng)
B. \(3\in S\) (đúng)
C. \(2\in S\) (Sai)
D. \(\dfrac{1}{2}\in S\) (Đúng)
⇒ Chọn C
Các số sau đây, số nào là số chính phương:
a, A=222...24 (50 c/s 2)
b,B=11115556
c, C=99..900..025 (n c/s 9 và n c/s 0)
d, D=44...488...89 (n c/s 4 và n-1 c/s 8)
e,E=111...1 - 22...2 (2n c/s 1 và n c/s 2)
f, F=12 + 22 +.....+ 562
giúp mình với ạ!
Cho hàm số f (x) = 9^x / (9^x + 3) .Biết a + b= 3, tính S = f (a) + f (b - 2). A. S=1. B. S=2. C. S=1/4. D. S=3/4
Lời giải:
\(a+b=3\Rightarrow a+(b-2)=1\Rightarrow b-2=1-a\)
Ta có:
\(f(x)=\frac{9^x}{9^x+3}\Rightarrow f(a)=\frac{9^a}{9^a+3}\) (1)
\(f(b-2)=f(1-a)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9^a\left(\frac{9}{9^a}+3\right)}\)
\(=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\) (2)
Từ (1),(2) suy ra \(f(a)+f(b-2)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=\frac{9^a+3}{9^a+3}=1\)
Đáp án A
Cho tam giác ABC có \(\widehat B = {135^o}\). Khẳng định nào sau đây là đúng?
a.
A. \(S = \frac{1}{2}ca\)
B. \(S = \frac{{ - \sqrt 2 }}{4}ac\)
C. \(S = \frac{{\sqrt 2 }}{4}bc\)
D. \(S = \frac{{\sqrt 2 }}{4}ca\)
Diện tích tam giác ABC: \(S = \frac{1}{2}ac.\sin B\)
Mà \(\widehat B = {135^o} \Rightarrow \sin B = \sin {135^o} = \frac{{\sqrt 2 }}{2}\).
\( \Rightarrow S = \frac{1}{2}ac.\frac{{\sqrt 2 }}{2} = \frac{{\sqrt 2 }}{4}.ac\)
Chọn D
Câu 4. Tập nghiệm của phương trình: x(x+ 1) = 0 là:
A. S = {0}. B. S = {0;1}. C. S = {–1}. D. S = {0; –1}.
Câu 5. Phương trình nào sau đây có 1 nghiệm:
A. x2 – 3x = 0. B. (x + 2)(x2 + 1) = 0.
C. x (x – 1) = 0. D. 2x + 1 = 1 + 2x.
Câu 6. Phương trình 2x – 3 = 1 tương đương với phương trình nào:
A. x2 – x = 0. B. x2 – 1 = 0.
C. . D. .
Câu 7. là nghiệm của phương trình:
A.. B.. C.. D..
Câu 8. Phương trình có tập nghiệm S là :
A. . B. S = {- 4}. C. S = {4;-4}. D. S = {4}.
Câu 9. Ở hình 2, x = ?
A. 9cm. B. 6cm. C. 1cm. D. 3cm.
Câu 10. Cho ABC có AD là đường phân giác (DBC), biết và CD = 15cm. Độ dài đoạn BD là:
A. 5cm. B. 10cm. C. 30cm. D. 45cm.
Câu 11. theo tỉ số k thì ~ theo tỉ số
A. – k. B. k2. C. . D. – k2.
Câu 12. theo tỉ số là 2 thì tỉ số diện tích của và là:
A. 2. B. 4. C. 1/2. D. 1/4.
4D
5B
Các câu còn lại bạn ghi lại đề nha bạn, đề bị lỗi rồi
S=1/4+1/9+1/16+...+1/10000
chứng tỏ S<1
S=1/4+1/9+1/16+...+1/10000 = 1/2x 2 + 1/3x3+...+1/100x100 < 1/1x2 + 1/2x3 +...+ 1/9x10 = 1 - 1/2 + 1/2 - 1/3 +...+ 1/9 - 1/10 = 1- 1/10 < 1
S=1/4+1/9+1/16+...+1/10000
chứng tỏ S<1
S=1/4+1/9+1/16+...+1/10000
= 1/2x 2 + 1/3x3+...+1/100x100 < 1/1x2 + 1/2x3 +...+ 1/9x10
= 1 - 1/2 + 1/2 - 1/3 +...+ 1/9 - 1/10 = 1- 1/10 < 1
S = 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + 1/49 + 1/64 + 1/81
CMR: 2/2 < S < 8/9
S=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81=1-1/81=1/81
vô lí vì 2/2 = 1 mà 8/9 < 1