Chứng minh \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{3}{2}\)
Mọi người làm hộ mình nha.
Chứng mình bất đẳng thức
1/\(\frac{1}{4}\left(\frac{x}{y}+\frac{y}{z}\right)\ge\frac{x}{y+z}\)
2/\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Mình mới làm quen với bất đẳng thức, các bạn giải chi tiết hộ mình nha. À mà giải theo Cauchy ý nha !
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
Cho x, y, z là 3 số dương (chứng minh hộ mình phần b) thôi)
a) \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) \(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=12\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
CMR : \(\frac{1}{4x+y+z}+\frac{1}{x+4y+z}+\frac{1}{x+y+4z}\le\frac{1}{6}\)
thế nào nhỉ ( :
Từ giả thiết => 1/x +1/y +1/z <= 1
A/d BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z ) và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x) + 1/4(1/y +1/x) + 1/4(1/x + 1/z))
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.
Các bạn giúp mình làm bài này với ạ!
Cho x, y, z > 0
Chứng minh rằng:
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge x+y+z.\)
\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)
cho x,y,z là các số thực dương chứng minh rằng :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
\(\Sigma\frac{x^3}{y^2}=\Sigma\frac{x}{y^2}\left(x-y\right)^2+\frac{\Sigma z\left(x^3-yz^2\right)^2}{xyz\left(x+y+z\right)}+\Sigma\frac{x^2}{y}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
\(VT-VP=\Sigma\frac{\left(x+y\right)\left(x-y\right)^2}{y^2}\ge0\)
chứng minh rằng \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x,y, z >0 chứng minh \(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}\)
e năm nay ms lên lớp 8
sorry a trai nhìu nhìu
Ta có :\(\frac{x^3}{x^2+y^2}=x-\frac{xy^2}{x^2+y^2}\ge x-\frac{xy^2}{2xy}=x-\frac{y}{2}\left(1\right).\)( vì x,y >0 ; \(x^2+y^2\ge2xy\Rightarrow\frac{xy^2}{x^2+y^2}\le\frac{xy^2}{2xy}.\))
Chứng minh tương tự ta có :
\(\frac{y^3}{y^2+z^2}\ge y-\frac{z}{2}\left(2\right).\); \(\frac{z^3}{z^2+x^2}\ge z-\frac{x}{2}\left(3\right).\)
Cộng vế với vế của các bất đẳng thức (1), (2) và (3) ta được :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}.\)( đpcm)
Chp x, y, z > 0. Chứng minh:
\(\frac{^{x^3}}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)
Vì x,y,z là các số dương nên ta áp dụng BĐT Cauchy được :
\(\frac{x^3}{y^2}+y+y\ge3.\sqrt[3]{\frac{x^3}{y^2}.y.y}=3x\)
Tương tự : \(\frac{y^3}{z^2}+2z\ge3y\) ; \(\frac{z^3}{x^2}+2x\ge3z\)
Cộng theo vế được \(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+2\left(x+y+z\right)\ge3\left(x+y+z\right)\)
\(\Leftrightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)
Áp dụng BĐT Cối cho 3 số dương ta có
\(\frac{x^3}{y^2}+y+y\ge3\sqrt[3]{\frac{x^3}{y^2}.y.y}=3\sqrt[3]{x^3}=3x\)
Tương tự \(\frac{y^3}{z^2}+z+z\ge3y;\frac{z^3}{x^2}+x+x\ge3z\)
Cộng vế theo vế ta có \(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}+2\left(x+y+z\right)\ge3\left(x+y+z\right)\)\(\Leftrightarrow\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge x+y+z\)(ĐPCM)
Cho x,y,z >0 và x+y+z=3.Chứng minh \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\)
đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)
Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)≥\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\) ≤\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))
⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)
⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)≥\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)
⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm
cho x, y, z >1 thỏa mãn \(x^2+y^2+z^2=6.\) Chứng minh \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{3\sqrt{2}}{3}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)