Giải phương trình:
a) (2x-1)2 = 3x(2x-1)
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x^2-2x}\)
Giải phương trình:
a) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
b) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
c) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
a) Ta có: \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
\(\Leftrightarrow\dfrac{2\left(x+5\right)}{6\left(x-2\right)}-\dfrac{3\left(x-2\right)}{6\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{6\left(x-2\right)}\)
Suy ra: \(2x+5-3x+6=6x-9\)
\(\Leftrightarrow-x+11-6x+9=0\)
\(\Leftrightarrow20-7x=0\)
\(\Leftrightarrow7x=20\)
hay \(x=\dfrac{20}{7}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{20}{7}\right\}\)
1) giải các phương trình:
a) 11-2x=x-1
b) \(\dfrac{3x+2}{2}\)-\(\dfrac{3x+1}{6}\)=2x+\(\dfrac{5}{3}\)
c) \(\dfrac{x}{2x-6}\)+\(\dfrac{x}{2x+2}\)=\(\dfrac{-2x}{\left(3-x\right).\left(x+1\right)}\)
GIẢI CHI TIẾT AH
a: =>-3x=-12
=>x=4
b: =>3(3x+2)-3x-1=12x+10
=>9x+6-3x-1=12x+10
=>12x+10=6x+5
=>6x=-5
=>x=-5/6
c: =>x(x+1)+x(x-3)=4x
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=3(loại) hoặc x=0(nhận)
Bài 1 giải phương trình:
a) (4x2+4x+1)-x2=0
b) x2-2x+1=4
c) x2-5x+6=0
Bài 2: giải phương trình
a) \(\dfrac{2x-5}{x+5}\)= 3
b) \(\dfrac{5}{3x+2}\)= 2x-1
c) \(\dfrac{x^2-6}{x}\)= x+\(\dfrac{3}{2}\)
d) \(\dfrac{1}{x-2}\)+3= \(\dfrac{x-3}{2-x}\)
e) \(\dfrac{3x-2}{x+7}\)=\(\dfrac{6x+1}{2x-3}\)
f) \(\dfrac{x-2}{x+2}\) - \(\dfrac{3}{x-2}\)=\(\dfrac{2\left(x-11\right)}{x^2-4}\)
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
2f.
ĐKXĐ: $x\neq \pm 2$
PT $\Leftrightarrow \frac{(x-2)^2-3(x+2)}{(x+2)(x-2)}=\frac{2(x-11)}{(x-2)(x+2)}$
$\Rightarrow (x-2)^2-3(x+2)=2(x-11)$
$\Leftrightarrow x^2-4x+4-3x-6=2x-22$
$\Leftrightarrow x^2-7x-2=2x-22$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Leftrightarrow x-4=0$ hoặc $x-5=0$
$\Leftrightarrow x=4$ hoặc $x=5$ (tm)
Giải phương trình:
a) \(\dfrac{2x-5}{x+5}\) = 4
b) \(\dfrac{x^2-4}{x}\) = \(\dfrac{2x+3}{2}\)
c) \(\dfrac{2x+3}{2x-1}\) = \(\dfrac{x-3}{x+5}\)
d) \(\dfrac{3x-2}{x+7}\) = \(\dfrac{6x+1}{2x-3}\)
a) ĐKXĐ: x≠-5
Ta có: \(\dfrac{2x-5}{x+5}=4\)
\(\Leftrightarrow2x-5=4\left(x+5\right)\)
\(\Leftrightarrow2x-5=4x+20\)
\(\Leftrightarrow2x-5-4x-20=0\)
\(\Leftrightarrow-2x-25=0\)
\(\Leftrightarrow-2x=25\)
hay \(x=\dfrac{-25}{2}\)(nhận)
Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)
b) ĐKXĐ: x≠0
Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-8=2x^2+3x\)
\(\Leftrightarrow2x^2-8-2x^2-3x=0\)
\(\Leftrightarrow-3x-8=0\)
\(\Leftrightarrow-3x=8\)
hay \(x=\dfrac{-8}{3}\)(nhận)
Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)
c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)
Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)
\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)
\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)
\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)
\(\Leftrightarrow20x+12=0\)
\(\Leftrightarrow20x=-12\)
hay \(x=-\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)
d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)
Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)
\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)
\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)
\(\Leftrightarrow-56x-1=0\)
\(\Leftrightarrow-56x=1\)
hay \(x=-\dfrac{1}{56}\)(nhận)
Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)
Giải phương trình:
a) \(\dfrac{x^2-x-6}{x-3}=0\)
b) \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)
c) \(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
d) \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
e) \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)Thể loại truyện
a) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
Suy ra: x+2=0
hay x=-2(thỏa ĐK)
Vậy: S={-2}
d)
ĐKXĐ: \(x\notin\left\{1;3\right\}\)
Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-3x+5x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+9=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3(loại)
Vậy: \(S=\varnothing\)
giải phương trình:
a) \(\dfrac{3x}{x^2+x-2}-\dfrac{2}{1-x}=\dfrac{5}{x+2}\)
b)\(\dfrac{2}{x^2+4x}-\dfrac{6x}{2x+8}=-3\)
a: \(\Leftrightarrow3x+2\left(x+2\right)=5\left(x-1\right)\)
=>3x+2x+4=5x-5
=>4=-5(vô lý)
b: \(\Leftrightarrow\dfrac{2}{x\left(x+4\right)}-\dfrac{3x}{x+4}=-3\)
\(\Leftrightarrow2-3x^2=-3x\left(x+4\right)\)
\(\Leftrightarrow2-3x^2+3x^2+12x=0\)
=>12x+2=0
hay x=-1/6
Giải bất phương trình:
a) 1 + \(\dfrac{x+1}{3}\) > \(\dfrac{2x-1}{6}\) - 2
b) \(\dfrac{5x^2-3}{5}\) + \(\dfrac{3x-1}{4}\) < \(\dfrac{x\left(2x+3\right)}{2}\) - 5
a)
\(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\\ \Leftrightarrow6+2\left(x+1\right)>2x-1-12\\ \Leftrightarrow8>-13\left(t.m\right)\)
Vậy bất phương trình có vô số nghiệm.
Giải phương trình:
a/ \(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\)
b/ \(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\)
c/ \(\dfrac{x}{2x+2}-\dfrac{2x}{x^2-2x-3}=\dfrac{2}{6-2x}\)
d/ \(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\)
Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)
a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)
Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0
\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)
\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x
\(\Leftrightarrow\) 10x2 = 0
\(\Leftrightarrow\) x = 0 (TM)
Vậy S = {0}
Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)
b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy..
d)\(\dfrac{5}{-x^2+5x-6}+\dfrac{x+3}{2-x}=0\\ \Leftrightarrow\dfrac{5}{\left(x-3\right)\left(2-x\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(2-x\right)\left(x-3\right)}=0\\ \Leftrightarrow5+x^2-9=0\\ \Leftrightarrow x^2-4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
vậy..
giải phương trình:
a,x(x+3)-(2x-1).(x+30)=0
b,x(x-3)-5(x-3)=0
c,\(\dfrac{1}{x+1}+\dfrac{5}{x-2}=\dfrac{3x}{\left(x+1\right)\left(x-2\right)}\)
d,\(\dfrac{x-1}{x+1}+\dfrac{x+1}{x-1}=\dfrac{4-2x^2}{\left(1-x^2\right)}\)
`a,x(x+3)-(2x-1).(x+30)=0`
`<=>x^2+3x-(2x^2+59x-30)=0`
`<=>x^2+56x-30=0`
`<=>x^2+56x+28^2=28^2+30`
`<=>(x+28)^2=28^2+30`
`<=>x=+-sqrt{28^2+30}-28`
`b,x(x-3)-5(x-3)=0`
`<=>(x-3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x=3\\x=5\end{array} \right.$
`c)1/(x-1)+5/(x-2)=(3x)/((x-1)(x-2))`
`đk:x ne 1,2`
`pt<=>x-2+5(x-1)=3x`
`<=>x-2+5x-5=3x`
`<=>6x-7=3x`
`<=>3x=7`
`<=>x=7/3`
`d)(x-1)/(x+1)+(x+1)/(x-1)=(4-2x^2)/(x^2-1)`
`đk:x ne +-1`
`pt<=>(x-1)^2+(x+1)^2=4-2x^2`
`<=>2x^2+2=4-2x^2`
`<=>4x^2=2`
`<=>x^2=1/2`
`<=>x=+-sqrt{1/2}`