Phân tích đa thức thành nhân tử:
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
mọi người giải bài chi tiết tí nhé vì nó hơi nâng cao
Bài 1 : phân tích đa thức thành nhân tử
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
= \(\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
= \(\left(x^2+4x+8\right)\left(x^2+4x+8+x\right)+2x\left(x^2+4x+8+x\right)\)
= \(\left(x^2+6x+8\right)\left(x^2+5x+8\right)\)
= \(\left(x^2+2x+4x+8\right)\left(x^2+5x+8\right)\)
= \(\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
Phân tích thành nhân tử:
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
#)Giải :
Đặt \(x^2+4x+8=k\)
Ta có :\(k^2+3xk+2x^2=k^2+2xk+xk+2x^2=k\left(k+2x\right)+x\left(k+2x\right)=\left(k+x\right)\left(k+2x\right)\)
\(\Rightarrow\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích các đa thức sau thành nhân tử:
\(A=4x^2+6x\). \(B=\left(2x+3\right)^2-x\left(2x+3\right)\). \(C=\left(9x^2-1\right)-\left(3x-1\right)^2\).
\(D=x^3-16x\). \(E=4x^2-25y^2\). \(G=\left(2x+3\right)^2-\left(2x-3\right)^2\).
\(A=4x^2+6x=2x\left(2x+3\right)\)
\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)
\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)
\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)
\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)
\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)
Phân tích đa thức thành nhân tử
a) \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+x^4\)
b) \(\left(x^2+4x+2\right)^2-3x\left(x^2+4x+2\right)+2x^2\)
c) \(4x^4-8x^3+3x^2-8x+4\)
d)\(2x^4-15x^3+35x^3-30x+8\)
phân thức đa thức thành nhân tử bằng cách đặt biến phụ
a) \(A=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
b) \(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
GIÚP MK VS MN!!!! MAI ĐI HC RỒI
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử
\(a.\left(x^2+4x-3\right)^2-5x\left(x^2+4x-3\right)+6x^2\)
B. \(x^2-2xy+y^2+3x-3y-4\)
\(c.\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
\(d.\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
PHÂN TÍCH ĐA THỨC SAU THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP ĐẶT BIẾN PHỤ
a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2.\)
b) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
c) \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
b/ Đặt x2 + x + 1 = a thì đa thức ban đầu thành
a(a + 1) - 12 = a2 + a - 12 = (a2 - 3a) + (4a - 12)
= (a - 3)(a + 4)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
phân tích đa thức thành nhân tử
a. \(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)
\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)
=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2
=(2x-3y)(x-y-2y+3x)-(4x-3y)2
=(2x-3y)(4x-3y)-(4x-3y)2
=(4x-3y)(2x-3y-4x+3y)
=(4x-3y))(-2x)