Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Anh
Xem chi tiết
Hang Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 5 2023 lúc 11:47

a: góc OAK+góc OBK=90+90=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA

=>KA^2=KC*KD

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

=>OK là trung trực của AB

=>KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 21:36

a: góc OAK+góc OBK=180 độ

=>OAKB nội tiếp

Xét ΔKAC và ΔKDA có

góc KAC=góc KDA

góc AKC chung

=>ΔKAC đồng dạng với ΔKDA
=>KA/KD=KC/KA

=>KA^2=KD*KC

b: Xét (O) có

KA,KB là tiếp tuyến

=>KA=KB

mà OA=OB

nên OK là trung trực của AB

=>OK vuông góc AB tại M

Xét ΔOAK vuông tại A có AM vuông góc OK

nên KM*KO=KA^2=KC*KD

=>KM/KD=KC/KO

=>ΔKMC đồng dạng với ΔKDO

=>góc KMC=góc KDO

Quỳnh vũ
Xem chi tiết

1: Xét tứ giác KAOB có \(\widehat{KAO}+\widehat{KBO}=90^0+90^0=180^0\)

nên KAOB là tứ giác nội tiếp

2: Xét (O) có

\(\widehat{KAC}\) là góc tạo bởi tiếp tuyến AK và dây cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{KAC}=\widehat{ADC}\)

Xét ΔKAC và ΔKDA có

\(\widehat{KAC}=\widehat{KDA}\)

\(\widehat{AKC}\) chung

Do đó: ΔKAC đồng dạng với ΔKDA

=>\(\dfrac{KA}{KD}=\dfrac{KC}{KA}\)

=>\(KA^2=KC\cdot KD\)

Xét (O) có

KA,KB là các tiếp tuyến

Do đó: KA=KB

=>K nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OK là đường trung trực của AB

=>OK\(\perp\)AB tại M và M là trung điểm của AB

Xét ΔOAK vuông tại A có AM là đường cao

nên \(KM\cdot KO=KA^2\)

=>\(KA^2=KM\cdot KO=KC\cdot KD\)

 

Clear Tam
Xem chi tiết
Rhider
27 tháng 1 2022 lúc 13:59

a) Ta có \(I\) là trung điểm \(AB,O\) là trung điểm \(BM\)

\(\rightarrow IO\) là đường trung bình \(\Delta ABM\rightarrow OI\text{/ / }AM\rightarrow OI\text{/ / }KM\)

Vì \(BM\) là đường kính của \(O\)\(\rightarrow BK\text{⊥}KM\rightarrow OI\text{⊥}BK\)

\(\rightarrow B,K\) đối xứng qua \(OI\)

\(\rightarrow\widehat{IKO=\widehat{IBO}=90^o}\)

\(\rightarrow IK\) là tiếp tuyền của \(O\)

Biết mỗi làm câu A

Rhider
27 tháng 1 2022 lúc 14:02

Hình vẽ

undefined

Nguyễn Huy Tú
27 tháng 1 2022 lúc 14:04

a, ^BKM = 900 ( góc nt chắn nửa đường tròn ) 

Xét tam giác BMK có : ^BKM = 900 

Vậy tam giác BMK vuông tại K

Vì AB là tiếp tuyến đường tròn (O) => ^ABO = 900

Xét tam giác ABM vuông tại B có BK là đường cao 

\(AB^2=AK.AM\)( hệ thức lượng ) 

b, Ta có : ^BKM = 900 ( góc nt chắn nửa đường tròn ) 

=> ^BKA = 900 

Xét tam giác BKA vuông tại K, có I là trung điểm AB 

=> IK = IA = IB 

Xét tam giác IKO và tam giác IBO có : 

IK = IB ( cmt ) 

IO _ chung 

OK = OB = R 

Vậy tam giác IKO = tam giác IBO ( c.c.c ) 

=> ^IKO = ^IBO = 900 ( 2 góc tương ứng ) 

Xét (O) có : K thuộc IK; K thuộc (O) 

=> IK là tiếp tuyến đường tròn (O)

Dương Đình Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 6 2023 lúc 23:21

a: góc OHK+góc OBK=180 độ

=>OHKB nội tiếp

b: góc AHK=góc AOK

góc BHK=góc BOK

mà góc AOK=góc BOK

nên góc AHK=góc BHK

=>HK là phân giác của góc AHB

Dương Đình Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 8:43

loading...

 

Mai Nhật Linh
Xem chi tiết
❄Jewish Hải❄
Xem chi tiết
❄Jewish Hải❄
3 tháng 2 2022 lúc 13:30

mik chỉ cần câu b thôi

hehe

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 2 2018 lúc 9:14

 

Giải bài tập Toán 9 | Giải Toán lớp 9

Ta có: OH > R > OK

⇒ ∠(OKH) > ∠(OHK)

(Góc đối diện với cạnh lớn hơn thì lớn hơn)