tìm tất cả đa thức f(x) với hệ số nguyên thỏa 16f(x^2) =(f(2x))^2
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.
tìm tất cả các đa thức f[x] có hệ số nguyên thõa mãn điều kiện [x+1].f[x]=[x-2].f[x+2] và f[0]=1
tìm tất cả các đa thức f[x] có hệ số nguyên thõa mãn điều kiện [x+1].f[x]=f[x+2].[x-2] và f[0]=1
Cho đa thức: f(x)= x^4-x^3-x^2+ax+b thỏa mãn khi chia f(x) lần lượt cho các đa thức x+1 và x-3 thì có dư tương ứng là -15 và 45. Hãy xác định các hệ số a, b và tìm tất cả các nghiệm của đa thức f(x)
\(f\left(x\right)\) chia \(x+1\) dư -15 \(\Rightarrow f\left(-1\right)=-15\Rightarrow-a+b=-16\)
\(f\left(x\right)\) chia \(x-3\) dư 45 \(\Rightarrow f\left(3\right)=45\Rightarrow3a+b=0\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=-16\\3a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-12\end{matrix}\right.\)
\(f\left(x\right)=x^4-x^3-x^2+4x-12=\left(x^2-4\right)\left(x^2-x+3\right)\)
\(f\left(x\right)=0\Leftrightarrow x^2-4=0\Rightarrow x=\pm2\)
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Tìm tất cả các giá trị nguyên của a để đa thức: f(x)=(x+a).(x+10)+1 phân tích được thành tích của 2 đa thức bậc nhất có hệ số nguyên
Giả sử (x-a)(x-10)+1 phân tích thành tích 2 đa thức bậc nhất có hệ số nguyên:(x-a)(x-10)+1 = (x-b)(x-c) x²-(10+a)x+10a+1 = x²-(b+c)x+bc => 10+a = b+c và 10a+1 = bc. bc=10a+1=10a+100 – 99 = 10(a+10)-99 = 10(b+c)-99 =>bc=10(b+c)-99 =>bc-10b-10c+100=1 (b-10)(c-10)=1 =>b-10=c-10=±1 b-10=c-10=1 => b=c=11 => a=b+c-10=12 b-10=c-10=-1 => b=c=9 => a=b+c-10=8 Vậy a=10 và a=8 a=12 => (x-a)(x-10)+1 =(x-12)(x-10)+1 = x²-22x+121 =(x-11)(x-11) a=8 => (x-a)(x-10)+1 =(x-8)(x-10)+1 = x²-18x+81=(x-9)(x-9)