Gọi số hạng có bậc cao nhất của \(f\left(x\right)\) là \(a_n.x^n\)
\(\Rightarrow\) Số hạng bậc cao nhất của \(16f\left(x^2\right)\) là \(16.\left(a_nx^n\right)^2=16a_n^2.x^{2n}\)
Số hạng bậc cao nhất của \(f^2\left(2x\right)\) là: \(\left(a_n.2x^n\right)^2=4a_n^2.x^{2n}\)
Đồng nhất hệ số 2 vế ta được: \(16a_n^2=4a_n^2\Rightarrow a_n=0\)
Hay mọi số hạng chứa x của đa thức đã cho đều có hệ số bằng 0
\(\Rightarrow\) Đa thức đã cho là đa thức hằng
Hay \(f\left(x\right)=k\) với mọi x
Thay vào đề bài: \(16k=k^2\Rightarrow\left[{}\begin{matrix}k=0\\k=16\end{matrix}\right.\)
Vậy có 2 đa thức thỏa mãn: \(\left[{}\begin{matrix}f\left(x\right)\equiv0\\f\left(x\right)\equiv16\end{matrix}\right.\)