Giaỉ phương trình sau :
\(\dfrac{180}{x-4}-\dfrac{180}{x}=\dfrac{1}{2}\)
Giaỉ các phương trình sau:
a, \(\dfrac{6-x}{4x-3}\)=\(\dfrac{2}{4x-3}\)
b, \(\dfrac{3-x}{2x-3}\)+x-1=\(\dfrac{-4}{2x-3}\)
c, \(\dfrac{2x-4}{x-3}\)=2x+1
a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{4}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)
\(\Rightarrow6-x=2\)
\(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)
b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{2}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)
\(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)
Vậy \(x\in\varnothing\).
a) ĐK: \(x\ne\dfrac{3}{4}\)
PT \(\Rightarrow27x-18-4x^2=8x-6\)
\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=4\)
b) ĐK: \(x\ne\dfrac{3}{2}\)
PT \(\Rightarrow3-x+2x^2-5x+3=-4\)
\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)
Vậy phương trình vô nghiệm
c) ĐK: \(x\ne3\)
PT \(\Rightarrow2x^2-5x-3=2x-4\)
\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)
Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)
Giaỉ các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số
d)\(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\) ≥\(1-\dfrac{x}{4}\)
e) \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
GIÚP MIK NHA MN
d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)
\(\Leftrightarrow8x+4-6+6x\ge12-3x\)
\(\Leftrightarrow14x+3x\ge12+2=14\)
\(\Leftrightarrow x\ge\dfrac{14}{17}\)
e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
\(\Leftrightarrow6x+12+4x-8< 6x-9\)
\(\Leftrightarrow4x< -9+8-12=-13\)
hay \(x< -\dfrac{13}{4}\)
Giaỉ hệ phương trình sau bằng phương pháp thế
a)\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2};\dfrac{3}{x}-\dfrac{4}{y}=-1\)
b)\(\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1;\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\)
c)\(\dfrac{5x}{x+1}+\dfrac{y}{y-3}=27;\dfrac{2x}{x+1}-\dfrac{3y}{y-3}=4\)
d)\(\dfrac{7}{x+2}+\dfrac{3}{y}=2;\dfrac{4}{x+2}-\dfrac{1}{y}=\dfrac{5}{2}\)
e)\(\dfrac{2x}{x+4}+\dfrac{2y}{2y-3}=27;\dfrac{2x}{x+4}-\dfrac{6y}{2y-3}=4\)
Bạn nào biết thì giải giúp mình với ạ,mình xin cảm ơn ạ!!!
Giaỉ phương trình sau :
\(\dfrac{x+5}{x-1}-\dfrac{x+1}{x-3}=\dfrac{8}{x^2+4x+3}\)
Giaỉ hệ phương trình: \(\dfrac{2}{x-y}+\sqrt{y+1}=4\)
\(\dfrac{1}{x-y}-3\sqrt{y+1}=-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-y}+3\sqrt{y+1}=12\\\dfrac{1}{x-y}-3\sqrt{y+1}=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\3\sqrt{y+1}=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y+1=4\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(4;3\right)\)
Giaỉ phương trình sau
\(\dfrac{1}{2x-3}+\dfrac{1}{2x+3}=\dfrac{2x+4}{4x^2-9}\)
\(ĐK:x\ne\pm\dfrac{3}{2}\\ PT\Leftrightarrow2x+3+2x-3=2x+4\\ \Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\)
\(\dfrac{1}{2x-3}+\dfrac{1}{2x+3}=\dfrac{2x+4}{4x^2-9}\)
\(\dfrac{2x+3+2x-3}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{2x+4}{4x^2-9}\)
\(\dfrac{4x}{4x^2-9}=\dfrac{2x+4}{4x^2-9}\Rightarrow4x=2x+4\)
\(\Rightarrow2x=4\Rightarrow x=2\)
1) sin2x + 2cosx = 0
2) sin(2x -10*) = \(\dfrac{1}{2}\) (-120* <x< 90*)
3) cos(2x+10*)= \(\dfrac{\sqrt{2}}{2}\)(-180*<x<180*)
4) \(\sin^2\left(5x+\dfrac{2\pi}{5}\right)-\cos^2\)(\(\dfrac{x}{4}-\pi\)) =0
1.
\(\Leftrightarrow2sinx.cosx+2cosx=0\)
\(\Leftrightarrow2cosx\left(sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow cosx=0\) (do \(cosx=0\Leftrightarrow sinx=\pm1\) bao hàm luôn cả pt \(sinx=-1\))
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
2.
\(\Leftrightarrow\left[{}\begin{matrix}2x-10^0=60^0+k360^0\\2x-10^0=120^0+n360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=35^0+k180^0\\x=65^0+n180^0\end{matrix}\right.\)
Do \(-120^0< x< 90^0\Rightarrow\left\{{}\begin{matrix}-120^0< 35^0+k180^0< 90^0\\-120^0< 65^0+n180^0< 90^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0\\n=\left\{-1;0\right\}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=35^0\\x=-115^0\\x=65^0\end{matrix}\right.\)
3. Làm tương tự câu 2
4.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos\left(10x+\dfrac{4\pi}{5}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2}cos\left(\dfrac{x}{2}-2\pi\right)\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)+cos\left(\dfrac{x}{2}-2\pi\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)+cos\left(\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow cos\left(10x+\dfrac{4\pi}{5}\right)=-cos\left(\dfrac{x}{2}\right)=cos\left(\pi-\dfrac{x}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}10x+\dfrac{4\pi}{5}=\pi-\dfrac{x}{2}+k2\pi\\10x+\dfrac{4\pi}{5}=\dfrac{x}{2}-\pi+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giaỉ các phương trình sau
\(a,\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)\(a,\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
nên \(x^2-10x-2000=0\)
\(\Leftrightarrow x^2+40x-50x-2000=0\)
\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)
Vậy: S={-40;50}
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{2}{3}\\\dfrac{1}{4x}+\dfrac{1}{3x}=\dfrac{1}{5}\end{matrix}\right.\)
Giaỉ hệ phương trình này giúp mình vs ạ
Đặt 1/x=a; 1/y=b
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\\dfrac{1}{4}a+\dfrac{1}{3}b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=2\\15a+20b=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15b+15b=30\\15b+20b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5b=18\\a+b=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{18}{5}\\a=\dfrac{64}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{18}\\y=\dfrac{15}{64}\end{matrix}\right.\)