thu gọn đa thức sau rồi tính giá trị của đa thức thu được tại x=-1,y=-2
A=6x^3y-7xy^2-8x^2y+11xy6^2
\(A=\left(-6x^7y^6\right)\left(8x^3y^3\right)=\left(-6.8\right).\left(x^7.x^3\right).\left(y^6.y^3\right)=-48x^{10}y^9\).
\(B=-7xy^2-2xy+6xy^2+5xy+6=\left(-7xy^2+6xy^2\right)+\left(-2xy+5xy\right)+6=-xy^2+3xy+6\)
cho đa thức M=2xy+9xy^2-2xy-7xy^2-3
a) thu gọn đa thức M
b)tính giá trị của đa thức M tại x=-1 và y=2
`a)`
`M=2xy+9xy^2-2xy-7xy^2-3`
`M=(2xy-2xy)+(9xy^2-7xy^2)-3`
`M=2xy^2-3`
___________________________________
`b)` Thay `x=-1;y=2` vào `M`. Ta có:
`M=2.(-1).2^2-3`
`M=-2.4-3=-8-3=-11`
1 thu gọn và Tìm bậc của các đa thức sau rồi Tính giá trị của đa thức tại x = -1,y=2 P=4x²y²-3xy³+5x²y²-5xy³--xy+x-1 Q=-4x²y²-xy+4xy³+2xy-6x³y-4x³y
Ta có:
\(P=4x^2y^2-3xy^3+5x^2y^2-5xy^3-xy+x-1\)
\(P=\left(4x^2y^2+5x^2y^2\right)-\left(3xy^3+5xy^3\right)-xy+x-1\)
\(P=9x^2y^2-8xy^3-xy+x-1\)
Bậc của đa thức P là: \(2+2=4\)
Thay x=-1 và y=2 vào P ta có:
\(P=9\cdot\left(-1\right)^2\cdot2^2-8\cdot-1\cdot2^3-\left(-1\right)\cdot2+\left(-1\right)-1=100\)
\(Q=-4x^2y^2-xy+4xy^3+2xy-6x^3y-4x^3y\)
\(Q=-4x^2y^2-\left(xy-2xy\right)+4xy^3-\left(6x^3y+4x^3y\right)\)
\(Q=-4x^2y^2+xy+4xy^3-10x^3y\)
Bậc của đa thức Q là: \(2+2=4\)
Thay x=-1 và y=2 vào Q ta có:
\(Q=-4\cdot\left(-1\right)^2\cdot2^2+\left(-1\right)\cdot2+4\cdot-1\cdot2^3-10\cdot\left(-1\right)^3\cdot2=-30\)
Cho đa thức A=3x^2+2,5xy^2+4x^2y-3,5xy^2 thu gọn đa thức A rồi tìm giá trị của đa thức tại x=-1/7;y=14
\(A=3x^2-xy^2+4x^2y\)
Thay x = -1/7 ; y = 14 ta được
\(\dfrac{3.1}{49}-\left(-\dfrac{1}{7}\right).14^2+\dfrac{4.1}{49}.14=\dfrac{1431}{49}\)
cho đơn thức P=(-2/3x^3y^2).(1/2x^2y^5)
a)thu gọn đa thức P rồi xác định hệ số và phần biến của đơn thức?
b)Tính giá trị của p tại x = -1 ; y = 1
\(\frac{-2}{3x^3y^2}\cdot\frac{1}{2x^2y^5}=\frac{-2}{6x^5y^7}=\frac{-1}{3x^5y^7}\)
Phần hệ số là : \(-\frac{1}{3}\)Phần biến là : \(\frac{1}{x^5y^7}\) với x,y khác 0
b, Với x=-1 và y=1 thì P = \(\frac{-1}{3\left(-1\right)^5\left(1\right)^7}=\frac{-1}{-3}=\frac{1}{3}\)
a, P= (-2/3.1/2).(x^3.x^2).(y^2.y^5)
P=-1/3.x^5.y^7
hệ số :-1/3
biến: x^5.y^7
b, Thay x=-1 ,y=1 vào đơn thức P . Ta có :
P=-1/3. (-1)^5.1^7
P=-1/3.-1.1
P=-1/3
P=(-2/3x^3y^2).(1/2x^2y^5)
P=(-2/3.1/2).(x^3.x^2).(y^2.y^5)
P=-1/3x^5y^7
Hệ số: -1/3: phần biến: x^5y^7
Thay giá trị của x và y tại x=-1,y=1. Ta có:
-1/3.(-1)^5.1^7
= -1/3.(-1).1
=1/3.1
=1/3
Bài 2:cho đa thức A=2x^3y-3xy^2+5x^3y-xy^2+2 a)thu gọn đa thức A và xác định bậc của đa thức. b)tính giá trị của đa thức A tại x=1;y=-1
\(a,A=2x^3y-3xy^2+5x^3y-xy^2+2\\=(2x^3y+5x^3y)+(-3xy^2-xy^2)+2\\=7x^3y-4xy^2+2\)
Bậc của đa thức A: 3 + 1 = 4.
\(b,\) Thay \(x=1;y=-1\) vào \(A\), ta được:
\(A=7\cdot1^3\cdot\left(-1\right)-4\cdot1\cdot\left(-1\right)^2+2\)
\(=-7-4+2=-9\)
Cho đa thức : x^3+2x^2y+3x^2+3y^2-3x^2
a, thu gọn
b, tính giá của đa thức tại x=1, y=2
\(a,x^3+2x^2y+3x^2+3y^2-3x^2\)
\(=x^3+2x^2y+3y^2\)
\(b,\)Thay x = 1, y = 2 vào đa thức x3 + 2x2y + 3y2 ta được:
\(1^3+2.1^2.2+3.2^2\)
\(=1+4+12\)
\(=17\)
Vậy giá trị của đa thức tại x = 1, y = 2 là 17
Cho đa thức \(A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\)
a) Thu gọn A. Tìm bậc của đa thức A
b) Tính giá trị biểu thức A tại x = 0,1 và y = -2.
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)
Bậc: 2
b, Thay x=0,1 và y=-2 vào A ta có:
\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)
\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)
Bậc: 2
b, Thay x=0,1 và y=-2 vào A ta có:
\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)
Thu gọn đa thức, tìm bậc và tính giá trị đa thức tại x = −1; y =1:
A=4\(X^3Y-XY-\dfrac{9}{2}X^3Y+3XY-1\)
Thay x=-1, y=1 vào A ta có:
\(A=4x^3y-xy-\dfrac{9}{2}x^3y+3xy-1\\
=-\dfrac{1}{2}x^3y+2xy-1\\
=-\dfrac{1}{2}.\left(-1\right)^3.1+2.\left(-1\right).1-1\\
=\dfrac{1}{2}-2-1\\
=
-\dfrac{5}{2}\)