x3-7x-6=0
Hãy tìm x
Bài 2: Tìm x, biết:
a) 4x(x + 1) = 8( x + 1) c) x2 – 6x + 8 = 0
b) x3 + x2 + x + 1 = 0 d) x3 – 7x – 6 = 0
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
(x-4).(2x+6)=0
hãy giải bt này!!
(x-4)(2x+6)=0
=>\(\left[{}\begin{matrix}x-4=0\\2x+6=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\2x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Ta có : (x - 4)(2x + 6) = 0
=> Một trong hai số phải bằng 0
Nếu x - 4 = 0 ⇒ x = 4
Nếu 2x + 6 = 0 ⇒ x = -3
Vậy x = 4 hoặc -3
tìm số tự nhiên x biết:
a) 219-7x(x+1)=100
b) (3x-6)x3=34
a ) 219 - 7 . ( x + 1 ) = 100
7 . ( x + 1 ) = 119
x + 1 = 17
x = 18
b ) ( 3x - 6 ) . 3 = 3 4
3x - 6 = 27
3x = 33
x = 11
tìm x
a)8x2+30x+7=0
b, x3-7x-6
a: \(\Leftrightarrow8x^2+16x+14x+7=0\)
=>(2x+1)(8x+7)=0
=>x=-1/2 hoặc x=-7/8
b: \(=x^3-x-6x-6\)
\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
\(a,\Rightarrow8x^2+2x+28x+7=0\\ \Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\\ \Rightarrow\left(2x+7\right)\left(4x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\\ b,Sửa:x^3-7x-6=0\\ \Rightarrow x^3-x-6x-6=0\\ \Rightarrow x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-x-6\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
Tìm x biết:
a/ 5x( x- 3) = x – 3 b/ x3 - x = 0 c/ x2 – 7x + 6 = 0
d/ x2 – 4 + ( x – 2)2 = 0 e/ x2 – 16 –( x +4) = 0 f/ x2 + x – 2 = 0
a: \(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)
b: \(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Tìm x
3/5+x=5/7
x x4/11=1/3
a. 3/5 + x = 5/7
x = 5/7 - 3/5
x = 4/35
b. x x 4/11= 1/3
x = 1/3 : 4/11
x = 11/12
3/5+x=5/7
x= 5/7 - 3/5
x= 4/35
X x 4/11= 1/3
X = 1/3 : 4/11
X = 11/12
Thực hiện phép chia:
a) ( x 3 - 3x - 2) : (x - 2);
b) ( x 3 + 6 x 2 + 8x - 3): ( x 2 + 3x -1);
c) (2 x 4 – 7 x 3 + 9 x 2 - 7x + 2): (2 x 2 - 5x + 2).
a) x 2 + 2x + 1. b) x + 3. c) x 2 – x + 1.
(x3 – 7x + 3 – x2) : (x – 3) = (x3 – x2 – 7x + 3) : (x – 3)
\(\left(3x-7x+3-2x\right):\left(x-3\right)=\left(3x-2x-7x+3\right):\left(x-3\right)\)
\(\left(3-6x\right):\left(x-3\right)-\left(3-6x\right):\left(x-3\right)=0\)
\(0=0\)
vậy \(x\in\varnothing\)
Theo mình thì x\(\ne\)3 thì hai vế bằng nhau
a) thu gọn đa thức p(x) = 2 x3 - 9x2 + 5 - 2x2- 4x3+7x và sắp xếp theo luỹ thừa giảm dần của biến tìm bậc tìm hệ số tự do
b) cho đa thức p(x) = x4-x3-x-2 tính p (-1)
a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)
\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)
\(P\left(x\right)=-2x^3-11x^2+7x+5\)
b) Thay x=1 vào đa thức P(x) ta được:
\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)
x3-7x-6=0
Ta có: \(x^3-7x-6=0\)
\(\Leftrightarrow x^3-x-6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=-2\end{matrix}\right.\)
\(x^3-7x-6=0\)
\(\Leftrightarrow x^3-x-6x-6=0\)
\(\Leftrightarrow x\left(x^2-1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x-1\right)-6\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-3x-6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=3\end{matrix}\right.\)
Vậy...