Viết các biểu thức sau thành bình phương của 1 tổng hoặc hiệu:
y2 + 4y + 4 +x +2xy+ y2
Viết mỗi biểu thức sau về dạng tổng hoặc hiệu hai bình phương
x2-2xy+5y2+4y+1
\(x^2-2xy+5y^2+4y+1\)
\(=x^2-2xy+y^2+4y^2+4y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2\)
\(x^2-2xy+5y^2+4y+1=x^2-2xy+y^2+4y^2+4y+1=\left(x-y\right)^2+\left(2y+1\right)^2\)
viết các biểu thức sau thành bình phương của một tổng và hiệu
a) 6x^2y+9+x^4y^2
b)−4xy+4x^2+y^2
c) 25y^4−10y^2+1
a) \(6x^2y+9+x^4y^2=\left(x^2y+3\right)^2\)
b) \(-4xy+4x^2+y^2=\left(2x-y\right)^2\)
c) \(25y^4-10y^2+1=\left(5y^2-1\right)^2\)
\(a,=\left(x^2y+3\right)^2\\ b,=\left(2x+y\right)^2\\ c,=\left(5y^2-1\right)^2\)
Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu:
a) \({x^2} + 2x + 1\) b) \(9 - 24x + 16{x^2}\) c) \(4{x^2} + \dfrac{1}{4} + 2x\)
a) \(x^2+2x+1\)
\(=\left(x+1\right)^2\)
b) \(9-24x+16x^2\)
\(=\left(3-4x\right)^2\)
c) \(4x^2+\dfrac{1}{4}+2x\)
\(=4x^2+2x+\dfrac{1}{4}\)
\(=\left(2x+\dfrac{1}{2}\right)^2\)
Chuyển các biểu thức sau thành bình phương của một tổng 2xy^2+x^2y^4+1
2xy2 +2x2y4+1
= 2xy2 + (xy2)2 +1
= (xy2)2 +2.xy2 .1 + 1
= (xy2 + 1)2
Giúp mình giài 2 bài toán này với. Lớp 8
Viết các biểu thức sau dươí dạng tổng
a) (x+1) (x^2-x+1)
b) (x-2y) (x^2+2xy+4y^2)
Cho mình hỏi thêm phương pháp để giải những bài toán viết các bt thành tổn hoặc tích. CẢM ƠN
Bài 2: Viết các biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc lập phương của một tổng, một hiệu
1, x\(^2\)+2xy+y\(^2\)
2, 4x\(^2\)+12x+9
3, x\(^2\)+5x+\(\dfrac{25}{4}\)
4, 16x\(^2\)-8x+1
5, x\(^2\)+x+\(\dfrac{1}{4}\)
6, x\(^2\)-3x+\(\dfrac{9}{4}\)
7, x\(^3\)+3x\(^2\)+3x+1
8,(\(\dfrac{x}{4}\))\(^2\)+x+1
9, 27y\(^3\)-9y\(^2\)+y-\(\dfrac{1}{27}\)
10, 8x\(^3\)+12x\(^2\)y+6xy\(^2\)+y\(^3\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
6, \(x^2-3x+\dfrac{9}{4}=x^2-2\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{3}{2}\right)^2\)
7, \(x^3+3x^2+3x+1=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x+1\right)^3\)
8, \(\dfrac{x^2}{4}+x+1=\left(\dfrac{x}{2}\right)^2+2\cdot\dfrac{x}{2}\cdot1+1^2=\left(\dfrac{x}{2}+1\right)^2\)
9, \(27y^3-9y^2+y-\dfrac{1}{27}=\left(3y\right)^3-3\cdot\left(3y\right)^2\cdot\dfrac{1}{3}+3\cdot3y\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3=\left(3y-\dfrac{1}{3}\right)^3\)
10, \(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3=\left(2x+y\right)^3\)
Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:
a) x 2 + 2x + 1; b) -8x + 16 + x 2 ;
c) x 2 4 + x + 1 ; d) 4 x 2 + 4 y 2 – 8xy.
a) ( x + 1 ) 2 . b) ( x – 4 ) 2 .
c) x 2 4 + x + 1 ; d) ( 2 x – 2 y ) 2 .
Viết các biểu thức sau thành bình phương một tổng hoặc một hiệu
(X+1)(x+2)(x+3)(x+4)+1
= (x + 1)(x + 4)(x + 2)(x + 3) + 1
= (x2 + 5x + 4)(x2 + 5x + 6) + 1
= x4 + 10x3 + 35x2 + 50x + 25
= (x2 + 5x + 5)2
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu :
a) a^2 - 6a + 9 b) 1/4x^2 + 2xy^2 + 4y^ 4