Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc An Pham
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 11 2018 lúc 21:42

Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)

VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được

Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)

Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)

Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)

Cộng vế với vế:

\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi a=b=c=1

Zz Sửu Nhi zZ
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
tth_new
1 tháng 11 2019 lúc 10:36

Haizz nhầm rồi:(

BĐT \(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le1+2+3\)

\(\Leftrightarrow\sqrt{a}.1+\frac{\sqrt{b}}{2}.2+\frac{\sqrt{c}}{3}.3\le1+2+3\)

\(VT=\frac{\sqrt{c}}{3}.1+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1\right)+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1+\sqrt{a}.1\right)\)

\(\le\frac{1}{2}\left[\frac{c}{9}+\left(\frac{c}{9}+\frac{b}{4}\right)+\left(\frac{c}{9}+\frac{b}{4}+a\right)+6\right]\) (áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\))

\(\le\frac{1}{2}\left(1+2+3+6\right)=6^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = 1; b = 4; c = 9

Is that true?Mong là lần này em không bị nhầm dấu-_-

Khách vãng lai đã xóa
tth_new
12 tháng 1 2019 lúc 20:18

Mình làm thử,đúng hay không thì mình không biết.Có chi mong bạn thông cảm và ib lỗi sai cho mình nha

Từ \(a+\frac{b}{4}+\frac{c}{9}\le3\) và \(\frac{b}{4}+\frac{c}{9}\le2\)

Suy ra \(a=\left(a+\frac{b}{4}+\frac{c}{9}\right)-\left(\frac{b}{4}+\frac{c}{9}\right)\le3-2=1\)  (1)

Từ \(\frac{b}{4}+\frac{c}{9}\le2\) và \(c\le9\) suy ra \(\frac{b}{4}+\frac{c}{9}\le\frac{b}{4}+\frac{9}{9}=1\le2\)

\(\Rightarrow\frac{b}{4}\le1\Rightarrow b\le4\) (2)

Từ (1) và (2) kết hợp với giả thiết suy ra \(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{1}+\sqrt{4}+\sqrt{9}=6^{\left(đpcm\right)}\)

Incursion_03
12 tháng 1 2019 lúc 20:22

tth làm ngược dấu kìa \(\frac{b}{4}+\frac{c}{9}\le2\Rightarrow-\left(\frac{b}{4}+\frac{c}{9}\right)\ge-2\) chứ sao lại nhỏ hơn hoặc bằng ?

Đẹp Trai Không Bao Giờ S...
Xem chi tiết
Đẹp Trai Không Bao Giờ S...
29 tháng 8 2019 lúc 15:48
Megpoid gumi gumiya
Xem chi tiết
Phan Phan
12 tháng 8 2017 lúc 14:42

Đặt a+1=x;  b+1=y;  c+1=z; đề bài trở thành ''Cho x,y,z\(\in\left(0;3\right)\)thỏa mãn x+y+z=3 cm \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le6\)''

Bất đẳng thức cần chứng minh tương đương : \(x^2+y^2+z^2-2\left(x+y+z\right)+3\le6\)\(\Leftrightarrow x^2+y^2+z^2\le3+2\left(x+y+z\right)=9\)(1)    mà \(x+y+z=3\Rightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)vậy (1)\(\Leftrightarrow9-2\left(xy+yz+xz\right)\le9\Leftrightarrow-2\left(xy+yz+xz\right)\le0\)(2)   mà x,y,z thuộc (0;3) => (2) đúng mà các phép biến đổi trên là tương đương nên ta suy ra đpcm 

dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:34

\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)

\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)

\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)

\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)

Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)

\(\Rightarrow0\le xy\le1\)

\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)

\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)

\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)

Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)

Phan Nghĩa
Xem chi tiết
IS
23 tháng 6 2020 lúc 20:32

Ta có 

\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)

\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)

                                                                            \(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)

\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)

\(=>=3+\frac{3+3}{2}=6\)

=> dpcm

cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm

Khách vãng lai đã xóa
Jennie Kim
23 tháng 6 2020 lúc 20:47

(a - b)^2 = a^2 - 2ab + b^2 > 0

(b - c)^2 = b^2 - 2bc + c^2 > 0

(c - a)^2 = c^2 - 2ac + a^2 > 0

=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac 

=> 6 > 2ab + 2bc + 2ac

=> 3 > ab + bc + ac    (1)

(a - 1)^2 = a^2 - 2a + 1 > 0

(b - 1)^2 = b^2 - 2b + 1 > 0

(c - 1)^2 = c^2 - 2c + 1 > 0

=>  a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c

=> 6 > 2a + 2b + 2c

=> 3 > a + b + c   và (1)

=> 6 > ab + ac + bc + a + b + c

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
23 tháng 6 2020 lúc 20:58

Đảo lại của Đề vào 10 Hà Nội 2013-2014

Dễ thấy 2 điều như thế này:

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\Rightarrow3\ge a+b+c\)

\(\Rightarrow a^2+b^2+c^2+3\ge ab+bc+ca+a+b+c\)

\(\Rightarrow ab+bc+ca+a+b+c\le6\) ( đpcm )

Khách vãng lai đã xóa
GG boylee
Xem chi tiết
dương minh hiếu
19 tháng 12 2018 lúc 21:40

sai roi

zZz Cool Kid_new zZz
9 tháng 12 2019 lúc 21:23

Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)

Ta bất đẳng thức phụ:

\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)

\(\Leftrightarrow7x+9\ge x^2+6x+9\)

\(\Leftrightarrow7\ge x+6\)

\(\Leftrightarrow x\le1\left(true!!\right)\)

Khi đó ta có:

\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 12 2019 lúc 21:27

Hoặc có thể biến đổi theo cách này:

Do \(a+b+c=1\)

\(\Rightarrow0\le a\le1\Rightarrow a^2\le a\)

Ta có:\(\sqrt{7a+9}=\sqrt{a+6a+9}\le\sqrt{a^2+6a+9}=\sqrt{\left(a+3\right)^2}=a+3\)

Tương tự:

\(\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị

PS:Hình như cách này hay hơn thì phải:v

Khách vãng lai đã xóa
LÊ QUỲNH THƠ
Xem chi tiết