Bài 3: Cho \(a,b\in R\)thỏa mãn \(9a^2+8ab+7b^2\le6\)CMR \(7a+5b+12ab\le9\)
Cho a,b,c > 0 thỏa mãn ab+bc+ac=3abc. Chứng minh rằng:
\(\dfrac{1}{\sqrt{7a^2-12ab+7b^2}}+\dfrac{1}{\sqrt{7b^2-13bc+7c^2}}+\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le3\)
Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)
VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được
Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)
Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)
Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)
Cộng vế với vế:
\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)
Dấu "=" xảy ra khi a=b=c=1
Cho a,b €N
a. 2a+5b chia hết cho 3 CMR 2a+5b chia hết cho 3
b. 3a+7b chia hết cho 5 CMR 9a+b chia hết cho 5
Với a,b,c > 0 thỏa mãn \(\hept{\begin{cases}a+\frac{b}{4}+\frac{c}{9}\le3\\\frac{b}{4}+\frac{c}{9}\le2\\c\le9\end{cases}}\)
CMR \(\sqrt{a}+\sqrt{b}+\sqrt{c}\le6\)
Haizz nhầm rồi:(
BĐT \(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le1+2+3\)
\(\Leftrightarrow\sqrt{a}.1+\frac{\sqrt{b}}{2}.2+\frac{\sqrt{c}}{3}.3\le1+2+3\)
\(VT=\frac{\sqrt{c}}{3}.1+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1\right)+\left(\frac{\sqrt{c}}{3}.1+\frac{\sqrt{b}}{2}.1+\sqrt{a}.1\right)\)
\(\le\frac{1}{2}\left[\frac{c}{9}+\left(\frac{c}{9}+\frac{b}{4}\right)+\left(\frac{c}{9}+\frac{b}{4}+a\right)+6\right]\) (áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\))
\(\le\frac{1}{2}\left(1+2+3+6\right)=6^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = 1; b = 4; c = 9
Is that true?Mong là lần này em không bị nhầm dấu-_-
Mình làm thử,đúng hay không thì mình không biết.Có chi mong bạn thông cảm và ib lỗi sai cho mình nha
Từ \(a+\frac{b}{4}+\frac{c}{9}\le3\) và \(\frac{b}{4}+\frac{c}{9}\le2\)
Suy ra \(a=\left(a+\frac{b}{4}+\frac{c}{9}\right)-\left(\frac{b}{4}+\frac{c}{9}\right)\le3-2=1\) (1)
Từ \(\frac{b}{4}+\frac{c}{9}\le2\) và \(c\le9\) suy ra \(\frac{b}{4}+\frac{c}{9}\le\frac{b}{4}+\frac{9}{9}=1\le2\)
\(\Rightarrow\frac{b}{4}\le1\Rightarrow b\le4\) (2)
Từ (1) và (2) kết hợp với giả thiết suy ra \(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{1}+\sqrt{4}+\sqrt{9}=6^{\left(đpcm\right)}\)
tth làm ngược dấu kìa \(\frac{b}{4}+\frac{c}{9}\le2\Rightarrow-\left(\frac{b}{4}+\frac{c}{9}\right)\ge-2\) chứ sao lại nhỏ hơn hoặc bằng ?
Cho \(a,b,c\in R\) thỏa mãn
\(1\le a,b,c\le2\)
Tìm GTNN \(A=\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c^2-12ac+9a^2}\)
Cho \(a,b,c\in\left\{-1;2\right\}\)thỏa mãn \(a+b+c=0\).CMR: \(a^2+b^2+c^2\le6\)
Đặt a+1=x; b+1=y; c+1=z; đề bài trở thành ''Cho x,y,z\(\in\left(0;3\right)\)thỏa mãn x+y+z=3 cm \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\le6\)''
Bất đẳng thức cần chứng minh tương đương : \(x^2+y^2+z^2-2\left(x+y+z\right)+3\le6\)\(\Leftrightarrow x^2+y^2+z^2\le3+2\left(x+y+z\right)=9\)(1) mà \(x+y+z=3\Rightarrow x^2+y^2+z^2=9-2\left(xy+yz+zx\right)\)vậy (1)\(\Leftrightarrow9-2\left(xy+yz+xz\right)\le9\Leftrightarrow-2\left(xy+yz+xz\right)\le0\)(2) mà x,y,z thuộc (0;3) => (2) đúng mà các phép biến đổi trên là tương đương nên ta suy ra đpcm
cho a,b không âm thỏa mãn \(\left(a-b\right)^2=a+b+2\)
CMR: \(\left(1+\dfrac{a^3}{\left(b+1\right)^3}\right)\left(1+\dfrac{b^3}{\left(a+1\right)^3}\right)\le9\)
\(GT\Leftrightarrow a^2+b^2-2ab=a+b+2\)
\(\Leftrightarrow a^2+a+b^2+b=2\left(ab+a+b+1\right)\)
\(\Leftrightarrow a\left(a+1\right)+b\left(b+1\right)=2\left(a+1\right)\left(b+1\right)\)
\(\Leftrightarrow\dfrac{a}{b+1}+\dfrac{b}{a+1}=2\)
Đặt \(\left(\dfrac{a}{b+1};\dfrac{b}{a+1}\right)=\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x;y\ge0\\x+y=2\end{matrix}\right.\)
\(\Rightarrow0\le xy\le1\)
\(P=\left(1+x^3\right)\left(1+y^3\right)=1+x^3+y^3+x^3y^3\)
\(P=1+\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3\)
\(P=\left(xy\right)^3-6xy+9=xy\left[\left(xy\right)^2-6\right]+9\le9\)
Dấu "=" xảy ra khi \(xy=0\Leftrightarrow\left(a;b\right)=\left(0;2\right);\left(2;0\right)\)
Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\)
CMR : \(ab+bc+ca+a+b+c\le6\)
Bài này mình nhặt được trên fb
Ta có
\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)
\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)
\(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)
\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)
\(=>=3+\frac{3+3}{2}=6\)
=> dpcm
cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm
(a - b)^2 = a^2 - 2ab + b^2 > 0
(b - c)^2 = b^2 - 2bc + c^2 > 0
(c - a)^2 = c^2 - 2ac + a^2 > 0
=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac
=> 6 > 2ab + 2bc + 2ac
=> 3 > ab + bc + ac (1)
(a - 1)^2 = a^2 - 2a + 1 > 0
(b - 1)^2 = b^2 - 2b + 1 > 0
(c - 1)^2 = c^2 - 2c + 1 > 0
=> a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c
=> 6 > 2a + 2b + 2c
=> 3 > a + b + c và (1)
=> 6 > ab + ac + bc + a + b + c
Đảo lại của Đề vào 10 Hà Nội 2013-2014
Dễ thấy 2 điều như thế này:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\Rightarrow3\ge a+b+c\)
\(\Rightarrow a^2+b^2+c^2+3\ge ab+bc+ca+a+b+c\)
\(\Rightarrow ab+bc+ca+a+b+c\le6\) ( đpcm )
Cho 3 số thực không âm thỏa mãn a+b+c=1. CMR
\(\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\ge10\)
Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)
Ta bất đẳng thức phụ:
\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)
\(\Leftrightarrow7x+9\ge x^2+6x+9\)
\(\Leftrightarrow7\ge x+6\)
\(\Leftrightarrow x\le1\left(true!!\right)\)
Khi đó ta có:
\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)
\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)
Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.
Hoặc có thể biến đổi theo cách này:
Do \(a+b+c=1\)
\(\Rightarrow0\le a\le1\Rightarrow a^2\le a\)
Ta có:\(\sqrt{7a+9}=\sqrt{a+6a+9}\le\sqrt{a^2+6a+9}=\sqrt{\left(a+3\right)^2}=a+3\)
Tương tự:
\(\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)
\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)
Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị
PS:Hình như cách này hay hơn thì phải:v
BÀI 1: 1D - 2A - 3C - 4D - 5B - 6C - 7A
BÀI 2: 1B- 2A- 3B - 4B - 5D - 6C - 7A
BÀI 3; 1D - 2C - 3D- 4C - 5B - 6D - 7D - 8D - 9A - 10A - 11D - 12A
BÀI 4: 1D - 2A - 3C - 4A - 5B - 6D - 7A - 8B - 9B - 10A
BÀI 5: 1A - 2D - 3D - 4C - 5B - 6D - 7A