Tam giác FGI vuông tại F, FH là đường cao kẻ từ F xuống GI. Biết Rằng GF = 16cm, IF = 12cm. Tính FH
cho tam giác ABC vuông tại C , AB = 16cm, BC = 12cm phân giác AD từ B kẻ đường thẳng vuông góc với AD ở E. đường cao CH của tam giác ABC cắt AD tại F. cm FH / FC = CD / DB
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. GỌi H là chân đường vuông góc kẻ từ S xuống Bd. Tia AH cắt DC tại F và cắt đường thẳng BC tại E. Chứng minh AH2 = EH . FH
a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(D B ^2 = B C ^2 + C D ^2\)
\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên
Cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,kẻ đường cao AH (H thuộc BC).đườngbphaan giác BE (E thuộc AC) cắt AH tại F 1)chứng minh tam giác HBA đồng dạng tam giác ABC 2)tính độ dài đoạn thẳng BC,AH 3)chứng minh FH/FA=EA/EC giúp mk vs mk cảm ơn
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
Cho tam giác MNP vuông tại M, đường cao MD. Biết MD = 12cm, PD = 16cm. Từ D kẻ đường cao DK của tam giác MND. Tính DK
Áp dụng hệ thức lượng trong tam giác vuông có:
\(MD^2=ND.DP\)\(\Rightarrow ND=\dfrac{MD^2}{DP}=\dfrac{12^2}{16}=9cm\)
\(\dfrac{1}{DK^2}=\dfrac{1}{ND^2}+\dfrac{1}{DM^2}=\dfrac{25}{1296}\)
\(\Rightarrow DK=\dfrac{36}{5}\) (cm)
Vậy...
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MD là đường cao ứng với cạnh huyền PN, ta được:
\(MD^2=PD\cdot ND\)
\(\Leftrightarrow ND=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMDN vuông tại D có DK là đường cao ứng với cạnh huyền MN, ta được:
\(\dfrac{1}{DK^2}=\dfrac{1}{DM^2}+\dfrac{1}{DN^2}\)
\(\Leftrightarrow\dfrac{1}{DK^2}=\dfrac{1}{12^2}+\dfrac{1}{9^2}=\dfrac{25}{1296}\)
\(\Leftrightarrow DK^2=\dfrac{1296}{25}\)
hay \(DK=7.2\left(cm\right)\)
Vậy: DK=7,2cm
cho tam giác ABC đường cao AH kẻ HE vuông góc với AB tại E, HE vuông góc với AC tại F trên tia đối của EH,FH lấy M,N sao cho EH=EM FH=FN
tìm điều kiện của tam giác ABC để BM và CN song song
Cho tam giác abc vuông tại A, trên đường cao AH kẻ HE vuông AB, E thuộc AB. Trên tia đối EH lấy M sao cho ME=EH. Kẻ HF vuông AC , F thuộc AC. Trên tia đối FH lấy N sao cho FN=FH. C/M MB song song NC
Xét ΔAHM có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM(1)
Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAN(2)
Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{BAC}=180^0\)
hay M,A,N thẳng hàng
Xét ΔAHB và ΔAMB có
AH=AM
\(\widehat{BAH}=\widehat{MAH}\)
AH chung
Do đó: ΔAHB=ΔAMB
Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)
hay BM\(\perp\)MA
hay BM\(\perp\)MN(3)
Xét ΔAHC và ΔANC có
AH=AN
\(\widehat{HAC}=\widehat{NAC}\)
AC chung
Do đó: ΔAHC=ΔANC
Suy ra: \(\widehat{AHC}=\widehat{ANC}=90^0\)
hay CN\(\perp\)NA
=>CN\(\perp\)NM(4)
Từ(3) và (4) suy ra MB//NC
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Sửa đề: ΔABC vuông tại A
a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔDAB\(\sim\)ΔACB(g-g)
b) Xét ΔABC có
BE là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)
Ta có: ΔDAB\(\sim\)ΔACB(cmt)
nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)
hay \(AE\cdot AB=BD\cdot EC\)(đpcm)
Cho hình tam giác ABC có BAC bằng 50 độ,ABC bằng 70 độ.Gọi BE là tia phân giác của ABC (e thuộc AC).Từ E kẻ EF//AB(F thuộc BC).Từ F kẻ tia phân giác FH của EFC(H thuộc BC).
a,Tính BEF và CEF
b,Qua F kẻ đường thẳng d vuông góc với BE cắt AB tại K.Tính BFK