1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A (AB > AC), kẻ AH vuông góc với BC (H thuộc BC), đường phân giác BE cắt AH tại F (E thuộc AC)
a) Chứng minh ΔHAC ∼ ΔABC
b) Cho biết AC = 3cm, BC = 5cm. Tính độ dài đoạn thẳng HB,AH
c) Chứng minh: \(\dfrac{FH}{FA}\)= \(\dfrac{EA}{EC}\)
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
Cho tam giác ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH ( H thuộc BC ).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC từ đó suy ra AB. AC = AH. BC
b) Tính độ dài các đoạn thẳng BC, Ah