a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng vói ΔABC
b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)
AH=3*4/5=2,4cm
HB=4^2/5=3,2cm
c: FH/FA=BH/BA
EA/EC=BA/BC
BH/BA=BA/BC
=>FH/FA=EA/EC
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng vói ΔABC
b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)
AH=3*4/5=2,4cm
HB=4^2/5=3,2cm
c: FH/FA=BH/BA
EA/EC=BA/BC
BH/BA=BA/BC
=>FH/FA=EA/EC
= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,kẻ đường cao AH (H thuộc BC).đườngbphaan giác BE (E thuộc AC) cắt AH tại F 1)chứng minh tam giác HBA đồng dạng tam giác ABC 2)tính độ dài đoạn thẳng BC,AH 3)chứng minh FH/FA=EA/EC giúp mk vs mk cảm ơn
Cho tam giác ABC vuông tại A có đường cao AH
a) chứng minh tam giác AHB đồng dạng với tam giác ABC
b) Cho BC = 10cm AB = 6cm Tính AC, HB
c) Phân giác của góc ABC cắt AH tại F và cắt cạnh AC tại E. Chứng minh
\(\frac{FA}{FH}=\frac{EC}{EA}\)
d) Đường thẳng qua C song song vs BE cắt AH tại K. CHứng minh: AF2 = FH x FK
Cho tam giác ABC vuông tại A, Kẻ AH vuông góc BC. Tia phân giác của góc B cắt AH tại D, cắt AC tại E
a) Chứng minh: ▲ ABE ∼ ▲HBD
b) Tính AH biết AB=6cm, AC = 8cm
c) Kẻ EK ⊥ BC. Chứng minh rằng \(\dfrac{EK}{AH}\)=\(\dfrac{CE}{CA}\)
Cho tam giác ABC vuông tại A, Kẻ AH vuông góc BC. Tia phân giác của góc B cắt AH tại D, cắt AC tại E
a) Chứng minh: ▲ ABE ∼ ▲HBD
b) Tính AH biết AB=6cm, AC = 8cm
c) Kẻ EK ⊥ BC. Chứng minh rằng \(\dfrac{EK}{AH}\)=\(\dfrac{CE}{CA}\)
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A , có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (H thuộc BC) a) Tính độ dài BC . b) Chứng minh tam giác HBA đồng dạng với tam giác HAC c) Chứng minh HA2=HB. HC d) Kẻ đường phân giác AD (D thuộc BC ) . tính các độ dài DB và DC ?
Cho tam giác ABC vuông tại A , có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (H thuộc BC) a) Tính độ dài BC . b) Chứng minh tam giác HBA đồng dạng với tam giác HAC c) Chứng minh HA2=HB. HC d) Kẻ đường phân giác AD (D thuộc BC ) . tính các độ dài BH
Cho tam giác ABC vuông tại A, có AB=9 cm , AC= 12 cm
Kẻ đường cao AH( H thuộc BC)
a) Chứng minh Tam giác HBA đồng dạng với tam giác ABC
b) Tính độ dài các đoạn thẳng BC,BH
c) Trong tam giác ABC kẻ phân giác AD( D thuộc BC) của góc BAC
Trong tam giác ADB kẻ phân giác DE( E thuộc AB) của góc ADB
Trong tam giác ADC kẻ phân giác DF (F thuộc AC) của góc ADC
Chứng minh rằng \(\frac{EB}{EA}+\frac{FC}{FA}=\frac{BC}{DA}\)