Xét ΔAHM có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM(1)
Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAN(2)
Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{BAC}=180^0\)
hay M,A,N thẳng hàng
Xét ΔAHB và ΔAMB có
AH=AM
\(\widehat{BAH}=\widehat{MAH}\)
AH chung
Do đó: ΔAHB=ΔAMB
Suy ra: \(\widehat{AHB}=\widehat{AMB}=90^0\)
hay BM\(\perp\)MA
hay BM\(\perp\)MN(3)
Xét ΔAHC và ΔANC có
AH=AN
\(\widehat{HAC}=\widehat{NAC}\)
AC chung
Do đó: ΔAHC=ΔANC
Suy ra: \(\widehat{AHC}=\widehat{ANC}=90^0\)
hay CN\(\perp\)NA
=>CN\(\perp\)NM(4)
Từ(3) và (4) suy ra MB//NC