Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nam

Tam giác ABC vuông tại A ( AB > AC). Kẻ phân giác BF (F thuộc AC). Gọi H là hình chiếu của điểm C trên BF, trên tia đối của tia HB lấy điểm E sao cho HE = HF. Gọi K là hình chiếu của F trên BC. Chứng minh rằng:
a) CE = CF, AB = BK
b) AK//CH
c) CH, FK, AB đồng quy

Nguyễn Lê Phước Thịnh
17 tháng 4 2023 lúc 19:19

a: Xét ΔCEF có

CH vừa là đường cao, vừa là trung tuyến

=>ΔCEF cân tại C

Xét ΔBAF vuông tại A và ΔBFK vuông tại K co

BF chung

góc ABF=góc KBF

=>ΔBAF=ΔBFK

=>BA=BK

b: BA=BK

FA=FK

=>BF là trung trực của AK

=>BF vuông góc AK

=>AK//CH

c: Gọi M là giao của CH với AB

Xét ΔBMC có

BH,CA là đường cao

BH cắt CA tại F

=>Flà trực tâm

=>MF vuông góc BC

=>CH,FK,AB đồng quy


Các câu hỏi tương tự
nguyễn thuỳ linh
Xem chi tiết
Lê Đoàn Hoàn Đăng
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Lưu Hoàng Bảo Nam
Xem chi tiết
Nguyên Vũ
Xem chi tiết
WRC Remix
Xem chi tiết
Hoàng Giang
Xem chi tiết
Hoàng Giang
Xem chi tiết
Hoàng Giang
Xem chi tiết