a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(D B ^2 = B C ^2 + C D ^2\)
\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên
a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:
\(D B ^2 = B C ^2 + C D ^2\)
\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)
hay DB=15(cm)
Xét ΔBDC có
BE là đường phân giác ứng với cạnh DC
nên
Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt
đường thẳng AB tại E và đường thẳng AD tại F.
a)Chứng minh : tam giác BEC đồng dạng tam giác AEF
b)Chứng minh : tam giác DCF đồng dạng tam giác AEF
c)Chứng minh : BE.DF = DB2.
d) Chứng minh : tam giác BDE đồng dạng tam giác DBF
Cho tam giác ABC vuông tại C (AC<BC). Vẽ tia phân giác Ax của BAC cắt cạnh BC tại I. Vẽ BH vuông góc tại Ax tại H.
a) Chứng minh tam giác AIC đồng dạng tam giác ABH
b) Chứng minh HB 2 = HI.HA
c) Kẻ đường cao CK của tam giác ABC> Kẻ KD là đường phân giác của tam giác CKA. Chứng minh \(\dfrac{CD}{DA}=\dfrac{CB}{CA}\)
Xin hãy giúp mình với ạ! Mình xin cám ơn!
Bài 1: Cho tam giác ABC⊥A có AB=6cm, AC=8cm. kẻ đường cao AH (H∈BC).
a) CMR: △ABC∼△HBA
b) Tính độ dài các cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
Cho ∆ABC vuông tại A (AB < AC ) . Từ trung điểm M của BC vẽ đường thẳng vuông góc với BC cắt cạnh AC tại N và cắt tia BA tại E , cho biết AB=9cm ,AC =12cm
a, chứng minh ∆ABC đồng dạng ∆MBE
b,chứng minh BC^2 = 4MN×ME
c,tính độ dài các đoạn thẳng ME;BE
cho ΔDEF vuông tại E có EF = 6cm, ED = 8cm, đường cao EM
a Chứng minh rằng ΔMEF đồng dạng với ΔEDF
b Chứng minh EM2 = MD.MF
c Kẻ tia phân giác góc D cắt EF tại N. chứng minh NE.DF=NF.ED
d Gọi I là giao điểm của DN và EM. Chứng minh tam giác EIN
Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh. a) ∆BEF~∆DEA; ∆DGE~∆BAE. b) AE^2 = EF~EG
cho hình bình hành ABCD có độ dài các cạnh AB =12cm BC =7cm trên cạnh AB lấy điểm E sao cho AE =8cm đường thẳng DE cắt cạnh CB kéo dài tại F
a) trong hình vẽ có tất cả bao nhiêu cặp tam giác đồng dạng vs nhau hãy viết tên các cặp tam giác đồng dạng vs nhau theo các đỉnh tương ứng
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng: a) AF . AB = AE . AC; b) HB . HE = HF . HC; c) BF . BA = BH . BE; d) CH . CF = CE . CA; e) EB . EH = EA . EC; f) FC . FH = FA . FB. Xin hãy giúp mình với ạ. Xin cảm ơn!
Cho ΔABC, O là điểm ở bên trong tam giác. Kẻ qua O đường thẳng song song với AB cắt AC, BC theo thứ tự tại M, N. Kẻ qua O đường thẳng song song với AC cắt AB, BC theo thứ tự tại P, Q. Hãy vẽ hình và chỉ ra trên hình đó những tam giác đồng dạng và giải thích vì sao chúng đồng dạng ?