Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc An Như
Xem chi tiết
Trần Việt Linh
10 tháng 10 2016 lúc 16:52

\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)

Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)

Mà Ư(7)={1;-1;7;-7}

=>x+3={1;-1;7;-7}

Ta có bảng sau:

x+31-17-7
x-2-44-10

Vậy x={-10;-4;-2;4}

 

soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 16:59

Ta có:

\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)

Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)

Các giá trị A nguyên tương ứng là: 5; -9; -1; -3

Vậy \(\begin{cases}x=-2\\A=5\end{cases}\)\(\begin{cases}x=-4\\A=-9\end{cases}\)\(\begin{cases}x=4\\A=-1\end{cases}\)\(\begin{cases}x=-10\\A=-3\end{cases}\)

Blade Lord
Xem chi tiết
nguyenthiluyen
Xem chi tiết
Đặng Thanh Thủy
23 tháng 6 2017 lúc 22:55

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

Đặng Thanh Thủy
23 tháng 6 2017 lúc 23:03

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)

Phạm Băng Băng
Xem chi tiết
Hô hô
Xem chi tiết
Hoàng Thị Lan Hương
29 tháng 6 2017 lúc 10:17

a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)

A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)

=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)

=\(\frac{x-4}{x-2}\)

b. Để A >0  thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)

Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)

c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)

Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{0,1,3,4\right\}\)

Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)

Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)

Hoàng Thị Lan Hương
29 tháng 6 2017 lúc 10:18

Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)

Đinh Trần Vũ Hưng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Yuzu
2 tháng 8 2019 lúc 15:24

a.

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

b. Ta có

\(\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Thay vào A ta được

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}\\ =\frac{\sqrt{3}-3}{\sqrt{3}+1}\\ =\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\\ =\frac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)

c. \(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)

Để \(A\in Z\Leftrightarrow4⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)\)

Ta thấy \(\sqrt{x}\ge0\forall x\ge0\left(ĐK\right)\Leftrightarrow\sqrt{x}+2\ge2\)

Nên \(\sqrt{x}+2\in\left\{2;4\right\}\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=2\\\sqrt{x}+2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy x=0 thì A thuộc Z

Trần Hoàng Phương Anh
Xem chi tiết
Đinh Thị Minh Ánh
Xem chi tiết
kudo shinichi
4 tháng 1 2020 lúc 22:36

a) Ta có: A= \(\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)

A = \(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+2x-x^2+4x-4+12-10x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{4}{x+2}\)

b) ĐKXĐ: x \(\ne\) \(\pm\)2

Để A \(\in\)Z <=> \(-\frac{4}{x+2}\in Z\) <=> -4 \(⋮\)x + 2

<=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng :

x + 2 1 -1 2 -2 4 -4
x -1 -3 0 -4 2(ktm) -6

Khách vãng lai đã xóa
Vũ Minh Tuấn
4 tháng 1 2020 lúc 22:38

a) Rút gọn:

\(A=\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)

\(A=\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{x.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(2-x\right).\left(x-2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{2x-4-x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{x^2+2x}{\left(x-2\right).\left(x+2\right)}+\frac{4x-4-x^2}{\left(x-2\right).\left(x+2\right)}+\frac{12-10x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{x^2+2x+4x-4-x^2+12-10x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{8-4x}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4.\left(2-x\right)}{\left(x-2\right).\left(x+2\right)}\)

\(A=\frac{4}{x+2}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa
Khánh Linh
4 tháng 1 2020 lúc 23:04

a) \(\frac{x}{x-2}+\frac{2-x}{x+2}+\frac{12-10x}{x^2-4}\)

=\(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(2-x\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12-10x}{\left(x-2\right)\left(x+2\right)}\)

=\(\frac{x\left(x+2\right)+\left(2-x\right)\left(x-2\right)+12-10x}{\left(x-2\right)\left(x+2\right)}\)

=\(\frac{x^2+2x+2x-4-x^2+2x+12-10x}{\left(x-2\right)\left(x+2\right)}\)

=\(\frac{-4x+8}{\left(x-2\right)\left(x+2\right)}\)

=\(\frac{-4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

=\(\frac{-4}{x+2}\)

b)(ĐKXĐ của A là x\(\ne\pm2\))

Với x\(\ne\pm2\) ta có:

A\(\in Z\)

\(\Leftrightarrow\frac{-4}{x+2}\in Z\)

\(\Rightarrow x+2\inƯ_{\left(-4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng sau :

x+2 -4 -2 -1 1 2 4
x -6 -4 -3 -1 0 2
NX tm tm tm tm tm loại

Vậy để \(A\in Z\) thì x = {-6,-4,-3,-1,0}

Khách vãng lai đã xóa