Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Băng Băng

cho biểu thức: A=\(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\) ( x >= 0; x khác 4)

a, Rút gọn A

b, Tìm A biết x = 4 - 2√3

c, Tìm x thuộc Z để A thuộc Z

Yuzu
2 tháng 8 2019 lúc 15:24

a.

\(A=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

b. Ta có

\(\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)

Thay vào A ta được

\(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}\\ =\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}\\ =\frac{\sqrt{3}-3}{\sqrt{3}+1}\\ =\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\\ =\frac{6-4\sqrt{3}}{2}=3-2\sqrt{3}\)

c. \(A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)

Để \(A\in Z\Leftrightarrow4⋮\sqrt{x}+2\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)\)

Ta thấy \(\sqrt{x}\ge0\forall x\ge0\left(ĐK\right)\Leftrightarrow\sqrt{x}+2\ge2\)

Nên \(\sqrt{x}+2\in\left\{2;4\right\}\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+2=2\\\sqrt{x}+2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=4\left(ktm\right)\end{matrix}\right.\)

Vậy x=0 thì A thuộc Z


Các câu hỏi tương tự
Hoan Mạnh
Xem chi tiết
kietdeptrai
Xem chi tiết
Xích U Lan
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Pham Thanh Thuong
Xem chi tiết
Phạm Xuân Tùng
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết