\(A=\frac{1-2x}{x+3}=\frac{-2\left(x+3\right)+7}{x+3}=-2+\frac{7}{x+3}\)
Vậy để A nguyên thì: \(x+3\inƯ\left(7\right)\)
Mà Ư(7)={1;-1;7;-7}
=>x+3={1;-1;7;-7}
Ta có bảng sau:
x+3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
Vậy x={-10;-4;-2;4}
Ta có:
\(A=\frac{1-2x}{x+3}=\frac{7-2x-6}{x+3}=\frac{7-2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-\frac{2.\left(x+3\right)}{x+3}=\frac{7}{x+3}-2\)
Để \(A\in Z\Leftrightarrow\frac{7}{x+3}\in Z\)
\(\Rightarrow x+3\inƯ\left(7\right)\)
\(\Rightarrow x+3\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{-2;-4;4;-10\right\}\)
Các giá trị A nguyên tương ứng là: 5; -9; -1; -3
Vậy \(\begin{cases}x=-2\\A=5\end{cases}\); \(\begin{cases}x=-4\\A=-9\end{cases}\); \(\begin{cases}x=4\\A=-1\end{cases}\); \(\begin{cases}x=-10\\A=-3\end{cases}\)