so sánh
a)\(\sqrt{35}+\sqrt{99}và16\)
b)\(\sqrt{50}+\sqrt{17}và11\)
so sánh
a)\(\sqrt{35}+\sqrt{99}và16\)
b)\(\sqrt{50}+\sqrt{17}và11\)
a) Ta có
\(\sqrt{35}< \sqrt{36}=6\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\Rightarrow\sqrt{35}+\sqrt{99}< 10+6=16\)
b) Ta có
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{17}>\sqrt{16}=4\)
\(\Rightarrow\sqrt{50}+\sqrt{17}>7+4=11\)
so sánh
a)\(\sqrt{35}+\sqrt{99}và16\)
b)\(\sqrt{50}+\sqrt{11}và11\)
giúp mk nhé
bài này mk làm bên dưới rồi
bạn kéo xuống là thấy nhé
bạn cũng có thể ấn vào Câu hỏi của CON CHÓ 4 ĐẦU - Toán lớp 7 | Học trực tuyến
so sanh\(\sqrt{24+\sqrt{35}và11}\)
\(\sqrt{24+\sqrt{35}}< \sqrt{25+\sqrt{36}}=\sqrt{5+6}=\sqrt{11}< 11\)
Không dùng mtct, hãy so sánh
A=\(\sqrt{12}+\sqrt{20}+\sqrt{30}+\sqrt{42}\)và 20
B=\(\sqrt{196}-\dfrac{1}{\sqrt{3}}-1\)và c=\(\sqrt{169}+\dfrac{-1}{\sqrt{2}}\)
M=\(\sqrt{61-35}\)vàN=\(\sqrt{61}-\sqrt{35}\)
so sánh \(\sqrt{24}+\sqrt{35}và11\)
Ta có: \(\left\{{}\begin{matrix}0< 24< 25\\0< 35< 36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{24}< \sqrt{25}\\\sqrt{35}< \sqrt{36}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{24}< 5\\\sqrt{35}< 6\end{matrix}\right.\)
\(\Rightarrow\sqrt{24}+\sqrt{35}\) < 5 + 6
\(\Leftrightarrow\) \(\sqrt{24}+\sqrt{35}\) < 11
Vậy \(\sqrt{24}+\sqrt{35}\) < 11
so sánh
a) \(4+\sqrt{33}\) và \(\sqrt{29}+\sqrt{14}\)
b) \(\sqrt{26}-\sqrt{3}-\sqrt{2009}\) và -42
a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)
\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)
mà 49>43 và 528>406
nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)
=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
so sánh
a) 2 và \(\sqrt{3}\)
b) 6 và \(\sqrt{41}\)
c) 7 và \(\sqrt{47}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
so sánh
a) 3 với 2\(\sqrt[3]{3}\)
b) 3\(\sqrt[3]{4}\) với 4\(\sqrt[3]{3}\)
So sánh:
\(\sqrt{17}+\sqrt{50}-1\)và \(\sqrt{99}\)
\(\sqrt{17}+\sqrt{50}-1>\sqrt{16}+\sqrt{49}-1\)
\(=4+7-1=10=\)\(\sqrt{100}>\sqrt{99}\)