a) Ta có
\(\sqrt{35}< \sqrt{36}=6\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\Rightarrow\sqrt{35}+\sqrt{99}< 10+6=16\)
b) Ta có
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{17}>\sqrt{16}=4\)
\(\Rightarrow\sqrt{50}+\sqrt{17}>7+4=11\)
a) Ta có
\(\sqrt{35}< \sqrt{36}=6\)
\(\sqrt{99}< \sqrt{100}=10\)
\(\Rightarrow\sqrt{35}+\sqrt{99}< 10+6=16\)
b) Ta có
\(\sqrt{50}>\sqrt{49}=7\)
\(\sqrt{17}>\sqrt{16}=4\)
\(\Rightarrow\sqrt{50}+\sqrt{17}>7+4=11\)
so sánh
a)\(\sqrt{35}+\sqrt{99}và16\)
b)\(\sqrt{50}+\sqrt{11}và11\)
giúp mk nhé
so \(\sqrt{99}\) với \(1+\sqrt{17}+\sqrt{26}\)
So sÁNH các số sau không dùng máy tính
a) \(\sqrt{7}+\sqrt{15}và7\)
b)\(\sqrt{2}+\sqrt{11}và\sqrt{3}+5\)
c) \(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
d)\(\sqrt{17}+\sqrt{21}+1và\sqrt{99}\)
So sánh
a) \(\sqrt{7}\) + \(\sqrt{15}\) và 7
b) \(\sqrt{17}\) + \(\sqrt{5}\) + 9 và \(\sqrt{115}\)
So sánh
a,\(\sqrt{21}-\sqrt{5}và\sqrt{20}-\sqrt{6}\)
b,\(\sqrt{2}+\sqrt{8}và\sqrt{3}+3\)
c,\(\sqrt{37}-\sqrt{14}và6-\sqrt{15}\)
Tìm x:\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}-3x=\left(1.2.3+2.3.4+...+98.99.100\right).\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\right)\)
a) tìm x,y,z biết:\(\left(2x-1\right)^{ }+\left(y-\dfrac{2}{5}\right)^{ }+|x+y-z|=0\)
b)so sánh \(\sqrt{15}+\sqrt{35}\) và\(2\sqrt{26}\)
c)so sánh 2126và 384
Cho A= \(\sqrt{625}-\frac{1}{\sqrt{5}}\)B= \(\sqrt{576}-\frac{1}{\sqrt{6}+1}\)
Hãy so sánh A và B
so sánh
a) \(\sqrt{48+\sqrt{120}}\) và 18
b) \(\sqrt{23}+\sqrt{15}\) và \(\sqrt{91}\)