b)Ta có:\(\sqrt{15}< \sqrt{16}=4\)
\(\sqrt{35}< \sqrt{36}=6\)
\(\Rightarrow\sqrt{15}+\sqrt{35}< 10\)(1)
Mà \(\sqrt{26}>\sqrt{25}=5\) \(\Rightarrow2\sqrt{26}>10\left(2\right)\)
Từ (1),(2)\(\Rightarrow\sqrt{15}+\sqrt{35}< 2\sqrt{26}\)
c)Ta có:\(2^{126}=\left(2^3\right)^{42}=8^{42}\)
\(3^{84}=\left(3^2\right)^{42}=9^{42}\)
Vì \(8^{42}< 9^{42}\) nên \(2^{126}< 3^{84}\)
b) \(\sqrt{15}+\sqrt{35}< \sqrt{16}+\sqrt{36}=4+6=10=2.5=2\sqrt{25}< 2\sqrt{26}\)
Vậy \(\sqrt{15}+\sqrt{35}< 2\sqrt{26}\)
a) để \(\)\(\left(2x-1\right)+\left(y-\dfrac{2}{5}\right)+\left|x+y-z\right|\)
\(\Rightarrow\left\{{}\begin{matrix}x+y-z=0\\y-\dfrac{2}{5}=0\\2x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y-z=0\\y=\dfrac{2}{5}\\x=\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+\dfrac{2}{5}=z\\y=\dfrac{2}{5}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}z=\dfrac{9}{10}\\y=\dfrac{2}{5}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...