Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Số học Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 12:54

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

c: AD là phân giác

=>AD/DC=BA/BC=AH/AC

=>AD*AC=AH*DC

Tuấn Minh Hoàng
Xem chi tiết
Nguyễn Tuệ Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 19:56

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) là góc chung

Do đó: ΔABH\(\sim\)ΔCBA(g-g)

Dung Trân
Xem chi tiết
Kaito Kid
23 tháng 3 2022 lúc 18:48

a) xét  tam giác ABH và tam giác CBA

có góc B chung

góc AGB= góc BAC=90

=>tam giác ABH đồng dạng tam giác CBA

=>\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

b) áp dụng định lý pytago có

AB2+AC2=BC2

Thay AB=8;AC=6

=>BC=10

Theo câu a)có:\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

thay số \(\dfrac{8}{10}=\dfrac{AH}{6}\)

=>AH=4,8

 

Kaito Kid
23 tháng 3 2022 lúc 18:43

undefined

hình

Nguyễn Tuệ Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2021 lúc 12:46

a) Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{ABH}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Dương Đăng Quang
6 tháng 3 2021 lúc 19:13

undefined

Dương Đăng Quang
6 tháng 3 2021 lúc 19:14

mình mới làm đc 2 câu thôi bucminhchúc bạn học tốt haha

huỳnh phước bảo hân
Xem chi tiết
Nguyễn Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 20:32

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
14 tháng 9 2023 lúc 23:11

a) Vì \(AH\) là đường cao nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)

Xét tam giác \(ABH\) và tam giác \(CBA\) có:

\(\widehat B\) (chung)

\(\widehat {AHB} = \widehat {CAB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta ABH\backsim\Delta CBA\) (g.g).

Do đó, \(\frac{{AB}}{{CB}} = \frac{{BH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{B^2} = BH.BC\) .

b)

-  Vì \(HE\) vuông góc với \(AB\) nên \(\widehat {HEA} = \widehat {HEB} = 90^\circ \)

Xét tam giác \(AHE\) và tam giác \(ABH\) có:

\(\widehat {HAE}\) (chung)

\(\widehat {HEA} = \widehat {AHB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHE\backsim\Delta ABH\) (g.g).

Do đó, \(\frac{{AH}}{{AB}} = \frac{{AE}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AB.AE\) . (1)

- Vì \(HF\) vuông góc với \(AC\) nên \(\widehat {HFC} = \widehat {HFA} = 90^\circ \)

Xét tam giác \(AHF\) và tam giác \(ACH\) có:

\(\widehat {HAF}\) (chung)

\(\widehat {AFH} = \widehat {AHC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHF\backsim\Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AF}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AF.AC\) . (2)

Từ (1) và (2) suy ra, \(AE.AB = AF.AC\) (điều phải chứng minh)

c) Vì \(AE.AB = AF.AC \Rightarrow \frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).

Xét tam giác \(AFE\) và tam giác \(ABC\) có:

\(\widehat A\) (chung)

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (chứng minh trên)

Suy ra, \(\Delta AFE\backsim\Delta ABC\) (c.g.c).

d) Vì \(HF\) vuông góc với \(AC\) nên \(CF \bot HI\), do đó, \(\widehat {CFH} = \widehat {CFI} = 90^\circ \).

Vì \(IN \bot CH \Rightarrow \widehat {CBI} = \widehat {HNI} = 90^\circ \).

Xét tam giác \(HFC\) và tam giác \(HNI\) có:

\(\widehat {CHI}\) (chung)

\(\widehat {HFC} = \widehat {HNI} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta HFC\backsim\Delta HNI\) (g.g).

Suy ra, \(\frac{{HF}}{{HN}} = \frac{{HC}}{{HI}}\) (hai cặp cạnh tương ứng cùng tỉ lệ)

Do đó, \(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\).

Xét tam giác \(HNF\) và tam giác \(HIC\) có:

\(\widehat {CHI}\) (chung)

\(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\) (chứng minh trên)

Suy ra, \(\Delta HNF\backsim\Delta HIC\) (c.g.c).

Nguyễn Thị Huyền Diệp
Xem chi tiết