Bài 3: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH.
a) Chứng minh: ∆ABH ∆CBA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại E, tia phân giác của góc AHC cắt AC tại D. Chứng minh: AD = AE
Bài 4: Cho tam giác ABC vuông tại A, (AB < AC), đường cao AH.
a) Chứng minh: ∆ACH ∆BCA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại D, tia phân giác của góc AHC cắt AC tại E. Chứng minh: AD = AE
4:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc ACH chung
=>ΔACH đồng dạng với ΔBCA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: góc EHD=góc EHA+góc DHA
=1/2*góc AHB+1/2*góc AHC=90 độ
góc EAD+góc EHD=180 độ
=>EADH nội tiếp
=>góc AED=góc AHD và góc ADE=góc AHE
mà góc AHD=góc AHE=45 độ
nên góc AED=góc ADE
=>AD=AE