x^3 - 2x + 3
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
1) `2x(3x-1)-(2x+1)(x-3)`
`=6x^2-2x-2x^2+6x-x+3`
`=4x^2+3x+3`
2) `3(x^2-3x)-(4x+2)(x-1)`
`=3x^2-9x-4x^2+4x-2x+2`
`=-x^2-7x+2`
3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`
`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`
`=3x^2-15x-x^2+4x-4-4x^2+9`
`=-2x^2-11x+5`
4) `(2x-3)^2+(2x-1)(x+4)`
`=4x^2-12x+9+2x^2+8x-x-4`
`=6x^2-5x+5`
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
a. ( 5 - 2x ) ( 5x + 2x ) + 2x ( x + 3 ) = 4 - 2x² b. ( 3x - 2 )( -2x) + 5x² = -x( x - 3) c. 7 - ( 3 + 2x ) (2x - 3 ) = ( x + 4 )²
a: Sửa đề: (5-2x)(5+2x)+2x(x+3)=4-2x^2
=>25-4x^2+2x^2+6x=4-2x^2
=>6x+25=4
=>6x=-21
=>x=-7/2
b: (3x-2)(-2x)+5x^2=-x(x-3)
=>-6x^2+4x+5x^2=-x^2+3x
=>4x=3x
=>x=0
c: =>7-(4x^2-9)=x^2+8x+16
=>7-4x^2+9-x^2-8x-16=0
=>-5x^2-8x=0
=>5x^2+8x=0
=>x(5x+8)=0
=>x=0 hoặc x=-8/5
Rút gọn:
c) (2x + 3)2 + (2x - 3)2 - (2x + 3) (2x - 3)
d) (x - 1) (x2 + x + 1) - (2x + 3) (4x2 - 6x + 9)
e) (x + 1)3 - (x - 1)3 - 6x2
c: \(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=4x^2+12x+9+4x^2-12x+9-\left(4x^2-9\right)\)
\(=8x^2+18-4x^2+9=4x^2+27\)
d: \(\left(x-1\right)\cdot\left(x^2+x+1\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(=\left(x-1\right)\left(x^2+x\cdot1+1^2\right)-\left(2x+3\right)\left[\left(2x\right)^2-2x\cdot3+3^2\right]\)
\(=x^3-1-8x^3-27=-7x^3-28\)
e: \(\left(x+1\right)^3-\left(x-1\right)^3-6x^2\)
\(=x^3+3x^2+3x+1-6x^2-\left(x^3-3x^2+3x-1\right)\)
\(=x^3-3x^2+3x+1-x^3+3x^2-3x+1\)
=2
\(|2x+6|-x=3
\)
TH1 \(|2x+6|=2x+6
khi
2x+6>=0hayx< =-3\)
ta có dạng pt
2x+6-x=3
<=>x+6=3
<=>x=-3TM
TH2\(|2x+6|=-2x-6
khi
2x+6< 0hay
x>-3\)
ta có dạng pt
-2x-6-x=3
<=>-3x-6=3
<=>-3x=9
<=>x=-3TM
mọi người xem hộ em đúng không ạ
ngược dấu hai chỗ điều kiện rồi bạn
Bài I. Rút gọn các biểu thức sau:
a) 3x(2x+1)+ (2x - 3)(x+1),
b) x(3x - 2)2 + 3(x-2)(x+2)
c) (2x+1)(4x² - 2x+1)-2x(2x+3)(2x - 3)-(x-3)²
a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)
\(=6x^2+3x+2x^2+2x-3x-3\)
\(=8x^2+2x-3\)
Thực hiện phép tính:
a)(2x-3)2+(2x+3).(5-2x)
b)3.(2x-3)+5.(x+2)
c)3x.(2x-8)+(6x-2).(5-x)
d)(x-3).(x+3)-(x-5)2
e)(x-y)3-(x-y).(x2+xy+y2)
Lời giải:
a.
$(2x-3)^2+(2x+3)(5-2x)=(4x^2-12x+9)-(-4x^2+4x+15)$
$=4x^2-12x+9+4x^2-4x-15$
$=24-8x$
b.
$3(2x-3)+5(x+2)=6x-9+5x+10=11x+1$
c.
$3x(2x-8)+(6x-2)(5-x)=(6x^2-24x)+(-6x^2+32x-10)$
$=6x^2-24x-6x^2-32x+10$
$=8x-10$
d.
$(x-3)(x+3)-(x-5)^2=(x^2-9)-(x^2-10x+25)$
$=x^2-9-x^2+10x-25=10x-34$
e.
$(x-y)^3-(x-y)(x^2+xy+y^2)=(x^3-3x^2y+3xy^2-y^3)-(x^3-y^3)$
$=-3x^2y+3xy^2=3xy(y-x)$
a: ta có: \(\left(2x-3\right)^2+\left(2x+3\right)\left(5-2x\right)\)
\(=4x^2-12x+9+2x-4x^2+15-6x\)
\(=-16x+24\)
b: Ta có: \(3\left(2x-3\right)+5\left(x+2\right)\)
\(=6x-9+5x+10\)
\(=11x+1\)
c: ta có: \(3x\left(2x-8\right)+\left(6x-2\right)\left(5-x\right)\)
\(=6x^2-24x+30x-6x^2-10+2x\)
\(=8x-10\)
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
\(a,\dfrac{x-3}{4}+\dfrac{2x-1}{3}=-\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)+4\left(2x-1\right)+2x}{12}=0\)
\(\Leftrightarrow3x-9+8x-4+2x=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
\(b,\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3-2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-6\end{matrix}\right.\)
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
(x^2+2x+3)^3 + 1/(x^2+2x+3)^3 - (x^2+2x) - 1/(x^2+2x+3) -18 = 0
a) \(\dfrac{4x}{x^2+2x}\)+\(\dfrac{8}{x^2+2x}\)
b) \(\dfrac{2x-3x}{x-2}\)-\(\dfrac{2x-4}{x-2}\)
c) \(\dfrac{2x-1}{x+3}\)-\(\dfrac{3x+2}{x+3}\)
d) \(\dfrac{11x}{2x-3}\)-\(\dfrac{18-x}{2x-3}\)
e) \(\dfrac{3\left(x-2\right)}{2x+1}\)-\(\dfrac{9x-3}{2x+1}\)
\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)
\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)