Cho tam giác DEF vuông tại F có DE=15cm EF=12cm. Tính DF
Cho tam giác DEF vuông tại F có DE=15cm EF=12cm. Tính DF Ét o ét cứu mìk vs mn
Áp dụng định lí Pytago ta có
\(DE^2=DF^2+FE^2\\ \Rightarrow DF=\sqrt{15^2-12^2}=9\)
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm , BC = 10cm và tam giác DEF vuông tại D có DE = 9cm, DF = 12cm, EF = 15cm.
a) Hai tam giác ABC và DEF có đồng dạng không? Vì sao?
b) Tính tỉ số chu vi của hai tam giác ấy?
a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có
AB/DE=AC/DF
Do đó: ΔABC\(\sim\)ΔDEF
b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)
Cho tam giác DEF vuông tại D có đường cao DH, DE=15cm, DF=20cm
a) Tính EF,DH,EH,HF
b) Tính so đo góc E, góc F
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
1) Cho tam giác DEF vuông tại D có đường cao DH, Cho DE = 12cm, EF = 20cm. Tính độ dài các
cạnh DF, DH, EH, FH ?
2) Cho tam giác DEF vuông tại D có đường cao DH, Cho EH = 7,2cm, FH = 12,8cm. Tính độ dài
các cạnh EF, DH, DE, DF?
giúp e với ạ e cần gấp
Cho tam giác DEF vuông tại D có DE=0,9cm ; DF=12cm và DH vuông góc với EF a) Viết tỉ số lượng giác tan E b) tính các tỉ số lượng giác của góc F
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
Cho tam giác DEF vuông tại D \(\dfrac{DE}{DF}\)= 0,3, EF= 15cm. Tính DF?
Xin cảm ơn mn ạ!
Ta có: \(tanDFE=\dfrac{DE}{DF}=0,3\Rightarrow\widehat{DFE}\approx16^o42'\)
\(\Rightarrow DF=sinDFE.EF=sin16^o42'.15=4,31\left(cm\right)\)
Cho tam giác DEF có DF=15cm , EF =12cm , DE=9cm
a) Chứng minh rằng tam giác DEF là tam giác vuông
b) Trên tia đối của tia ed lấy điểm I sao cho IE=5cm. Tính độ dài IF
a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.
Cho tam giác DEF vuông tại D có DE = 15cm; DF = 20cm. Vẽ đường phân giác DI
( I∈EF). Tính EI, FI ta được:
Xét ΔDEF vuông ở D , theo định lý Pi-ta-go ta được :
\(\Rightarrow EF=\sqrt{DE^2+DF^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
Ta có : DI là phân giác \(\widehat{EDF}\)
\(\Rightarrow\dfrac{EI}{IF}=\dfrac{DE}{DF}\)
hay \(\dfrac{EI}{IF}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{EI}{3}=\dfrac{IF}{4}=\dfrac{EI+IF}{3+4}=\dfrac{25}{7}\)
\(\Rightarrow EI=\dfrac{25}{7}.3=\dfrac{75}{7}\left(cm\right)\)
\(\Rightarrow FI=\dfrac{25}{7}.4=\dfrac{100}{7}\left(cm\right)\)
Cho tam giác DEF vuông tại E,đường cao ek.EK=12cm,EF=20cm. Tính DE, DF
Áp dụng định lí Pytago vào ΔEKF vuông tại K, ta được:
\(EF^2=EK^2+KF^2\)
\(\Leftrightarrow KF^2=20^2-12^2=256\)
hay KF=16(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔFED vuông tại E có EK là đường cao ứng với cạnh huyền FD, ta được:
\(EF^2=FK\cdot FD\)
\(\Leftrightarrow FD=\dfrac{20^2}{16}=\dfrac{400}{16}=25\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDEF vuông tại E, ta được:
\(FD^2=EF^2+ED^2\)
\(\Leftrightarrow ED^2=25^2-20^2=225\)
hay ED=15(cm)