S=1+52+53+...+5200
Bài 1 :tìm x , biết :
(x-7)x+1 - (x-7)x+11 =0
Bài 2 :tìm x , biết :
a,|2x-3| > 5 c,|3x-1| ≤ 7 d,|3x-5| + |2x+3| = 7
Bài 3 :
a,tính tổng S = 1 + 52 + 54 + ....... + 5200.
b,so sánh 230 + 330 + 430 và 3.2410
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
a,Tính tổng:S=1+52+54+...+5200
b,So sánh 230+330+430 và 3.2410
a,Tính tổng:S=1+52+54+...+5200
=>52S=52+54+56+...+5202
=>25S-S=24S=5202-1
=>S=\(\frac{5^{202}-1}{24}\)
b,So sánh 230+330+430 và 3.2410
3.24^10=3^11.4^15
4^30=4^15.4^15
hiển nhiên 4^15>3^11
=>3.24^10<<4^30<<<2^30+3^20+4^30
Ta có: 230+330+430>230+230+430=231+230.230
=231(1+229) (1)
Lại có:3.24^10=3^11.2^30 (2)
So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29
và 2^30<2^31
=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
Cho S=1/51+1/52+1/53+...+1/98+1/99+1/100. So sánh S với 1/2
dãy trên có tất cả :(100-51):1+1=50 phân số
Ta có : 1/2:50=1/100
=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)
Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối
=>dãy S >1/2
Cho S = 1 - 5 + 52 - 53 +.... + 598 - 599
a)Tính S b)CMR: 5100 chia cho 6 dư 1
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
e đang cần gấp, có ai đến giúp e ko?
\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)
Cho S=1/51+1/52+1/53+...+1/98+1/99+1/100. So sánh S với 1/2
cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2
C/m S=1/51 +1/52 +1/53+...+1/100 ko là số tự nhiên
Lời giải:
Hiển nhiên \(S>0\)
\(S=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=\frac{50}{51}<1\)
Do đó $0< S<1$ nên $S$ không là số tự nhiên.
a) S=1+2+22+23+...+22022
b)S=3+32+33+...+32022
c)S=4+42+43+...+42022
d)S=5+52+53+...+52022
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
Cho S=1/51+1/52+1/53+...+1/98+1/99+1/100.So sánh S với 1/2.Thanks nha
Cho S= 1/51 +1 + 1/52 + 1/53 + ................. + 1/99 + 1/100
Hãy so sánh S với 1/2
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)
\(\Rightarrow S>\frac{50.1}{100}\)
\(\Rightarrow S>\frac{50}{100}\)
\(\Rightarrow S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Ta có :
\(S=\frac{1}{51}+\frac{1}{51}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) ( có 50 số \(\frac{1}{100}\) )
\(\Rightarrow\)\(S>\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
Chúc bạn học tốt ~