Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ĐOÀN THỊ MINH HIỀN
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 7:20

\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)

\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)

 

 

Thịnh
19 tháng 9 2021 lúc 22:57

Mai lam

 

Carthrine
Xem chi tiết
Lee Min Ho club
19 tháng 6 2016 lúc 20:10

a,Tính tổng:S=1+52+54+...+5200

=>52S=52+54+56+...+5202

=>25S-S=24S=5202-1

=>S=\(\frac{5^{202}-1}{24}\)

b,So sánh 230+330+430 và 3.2410

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<<4^30<<<2^30+3^20+4^30

Đinh Thị Huyền Nga
12 tháng 6 2017 lúc 15:26

Ta có: 230+330+430>230+230+430=231+230.230

                                                                 =231(1+229) (1)

Lại có:3.24^10=3^11.2^30 (2)

So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29

                              và 2^30<2^31

=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30

Nguyễn Quang Minh
Xem chi tiết
Nguyễn Bùi Hà Chi
Xem chi tiết
Nguyễn Đắc Linh
15 tháng 3 2023 lúc 21:10

dãy trên có tất cả :(100-51):1+1=50 phân số

Ta có : 1/2:50=1/100

=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)

Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối

=>dãy S >1/2

Nguyễn Minh Dương
Xem chi tiết
boi đz
29 tháng 6 2023 lúc 17:14

0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)

\(b,S6=1-5^{100}\\ 1-S6=5^{100}\) 

=> 5100 chia 6 du 1

 

Nguyễn Minh Dương
29 tháng 6 2023 lúc 16:45

e đang cần gấp, có ai đến giúp e ko?

\(S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ a,S=5^0.\left(1-5\right)+5^2.\left(1-5\right)+...+5^{98}.\left(1-5\right)=-4.\left(5^0+5^2+5^4+...+5^{98}\right)\)

Nguyễn Thị Giang
Xem chi tiết
nguyen van tu
15 tháng 3 2015 lúc 8:59

cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2

phạm minh ngọc
13 tháng 5 2016 lúc 15:50
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng) Nên: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
Nhâm Thị Hoa Huệ
Xem chi tiết
Akai Haruma
5 tháng 5 2021 lúc 22:34

Lời giải:

Hiển nhiên \(S>0\)

\(S=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=\frac{50}{51}<1\)

Do đó $0< S<1$ nên $S$ không là số tự nhiên.

Thuỳ linh*
Xem chi tiết
HT.Phong (9A5)
10 tháng 10 2023 lúc 18:38

a) \(S=1+2+2^2+..+2^{2022}\)

\(2S=2+2^2+2^3+...+2^{2023}\)

\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)

\(S=2^{2023}-1\)

b) \(S=3+3^2+3^3+...+3^{2022}\)

\(3S=3^2+3^3+...+3^{2023}\)

\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)

\(2S=3^{2023}-3\)

\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)

c) \(S=4+4^2+4^3+...+4^{2022}\)

\(4S=4^2+4^3+...+4^{2023}\)

\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)

\(3S=4^{2023}-4\)

\(S=\dfrac{4^{2023}-4}{3}\)

d) \(S=5+5^2+...+5^{2022}\)

\(5S=5^2+5^3+...+5^{2023}\)

\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)

\(4S=5^{2023}-5\)

\(S=\dfrac{5^{2023}-5}{4}\)

Nguyễn Ngọc Thùy Dương
Xem chi tiết
Nguyễn Ngọc Lan
Xem chi tiết
Kiên-Messi-8A-Boy2k6
23 tháng 3 2018 lúc 20:10

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\left(50SH\right)\)

\(\Rightarrow S>\frac{50.1}{100}\)

\(\Rightarrow S>\frac{50}{100}\)

\(\Rightarrow S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Nguyễn Thị Xuân Tuyết
23 tháng 3 2018 lúc 20:10

nhỏ hơn

Phùng Minh Quân
23 tháng 3 2018 lúc 20:10

Ta có : 

\(S=\frac{1}{51}+\frac{1}{51}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\) ( có 50 số \(\frac{1}{100}\) ) 

\(\Rightarrow\)\(S>\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

Chúc bạn học tốt ~