Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Tiến
Xem chi tiết
Hải nam
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
15 tháng 6 2019 lúc 10:52

CM : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Có : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\)\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\) đpcm

Chi Khánh
Xem chi tiết
Đoàn Đức Hà
8 tháng 8 2021 lúc 18:02

\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Ta có đpcm. 

Khách vãng lai đã xóa
Uyên
Xem chi tiết
Hiếu
2 tháng 4 2018 lúc 21:46

Ta có : \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Vì VT=VP nên ta có đpcm

Nguyễn Xuân Anh
2 tháng 4 2018 lúc 21:55

\(\text{Ta có:}\)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+1}+\frac{1}{n+2}=\frac{2\left(n+1\right)}{n\left(n+2\right)}-\frac{2}{n+1}\left(1\right)\)

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}+\frac{2}{n+1}-\frac{2}{n+1}=\frac{2n\left(n+2\right)+2}{n\left(n+1\right)\left(n+2\right)}-\frac{2}{n+1}=\frac{2\left(n+1\right)^2}{n\left(n+1\right)\left(n+2\right)}-\frac{2}{n+1}=\frac{2\left(n+1\right)}{n\left(n+2\right)}-\frac{2}{n+1}\left(2\right)\)

\(\text{Từ (1) và (2) ta có: ĐPCM}\)

Nguyễn Trung
Xem chi tiết
Đinh Đức Hùng
14 tháng 2 2018 lúc 10:21

Với \(k\in N;k>0\) Ta có :

\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{\left(k+2\right)-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)

Áp dụng ta có :

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{n\left(n+1\right)-2}{2n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)(đpcm)

Phùng Minh Quân
14 tháng 2 2018 lúc 10:23

Ta có : 

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{2\left(n-1\right)\left(n+2\right)}{4n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{n\left(n-1\right)+2\left(n-1\right)}{2n\left(n+1\right)}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{n\left(n+1\right)}=\frac{n^2-n+2n-2}{2n^2+2n}\)

\(\Leftrightarrow\)\(\frac{n\left(n+1\right)}{2n\left(n+1\right)}-\frac{2}{2n\left(n+1\right)}=\frac{n^2+n-2}{2n^2+2n}\)

\(\Leftrightarrow\)\(\frac{n^2+n-2}{2n^2+2n}=\frac{n^2+n-2}{2n^2+2n}\) với \(n\ge2\)

Vậy ...

TXT Channel Funfun
Xem chi tiết
Thanh Tùng DZ
3 tháng 9 2017 lúc 20:52

a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

b) \(\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)=\frac{1}{q}\left(\frac{n+q}{n\left(n+q\right)}-\frac{n}{n\left(n+q\right)}\right)=\frac{1}{q}.\frac{q}{n\left(n+q\right)}=\frac{1}{n\left(n+q\right)}\)

To Kill A Mockingbird
3 tháng 9 2017 lúc 21:01

a/  Xét mẫu số VP_  n và n+1 là 2 số liên tiếp 

\(\Rightarrow\left(n,n+1\right)\)bằng 1

Thay vào đề bài     \(\frac{1}{n}-\frac{1}{n+1}\)bằng   \(\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\)bằng \(\frac{1}{n\cdot\left(n+1\right)}\)

\(\Rightarrowđpcm\)

P/s _laptop ko gõ đc dấu

Nguyễn Đình Dũng
Xem chi tiết
Kira Kira
10 tháng 10 2015 lúc 22:05

 Xét vế phải: \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

= \(\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)

= \(\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)

= \(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)   

= VT

=> Đpcm
 

Huân Nguyễn
10 tháng 10 2015 lúc 22:05

quy đồng là ra ngay đó mà

Trần Thị Đào
Xem chi tiết
Nguyễn Tấn Tài
21 tháng 1 2017 lúc 21:24

Ta có \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(=\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) (đpcm)

Áp dụng công thức trên ta có

A\(=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot\cdot\cdot\cdot\cdot+\frac{1}{2015\cdot2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{2015\cdot2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{2}{3\cdot4}+....+\frac{1}{2015\cdot2016}-\frac{1}{2016\cdot2017}\)

\(\Leftrightarrow2A=\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\)

\(\Rightarrow A=\left(\frac{1}{1\cdot2}-\frac{1}{2016\cdot2017}\right)\div2\approx0.25\)

Vậy A\(\approx0.25\)

Trần Thị Đào
Xem chi tiết
LeO Channel
Xem chi tiết