\(\frac{1}{n}-\frac{1}{n+1}\)
\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)
\(=\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow DPCM\)
Ta có: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{\left(n-n\right)+1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
Vì \(\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\Rightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) ĐPCM
Ta có:
\(\frac{1}{n.\left(n+1\right)}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\left(đpcm\right)\)
Ta có:\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Vậy ta có điều phải chứng minh: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)