chứng minh ED vuông góc AC
Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt tia AC tại D. Lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh: ΔABD = ΔEBD.
b) Tia ED cắt BA TẠI m. Chứng minh: góc BME = góc BCA và ME =CA
a: XétΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Xét ΔBME vuông tại E và ΔBCA vuông tại A có
BE=BA
\(\widehat{MBE}\) chung
Do đó: ΔBME=ΔBCA
Suy ra: \(\widehat{BME}=\widehat{BCA}\) và ME=CA
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
2) mình làm câu a thôi nha
a) Tam giác ABC vuông tại A
Suy ra AB^2+AC^2=BC^2
AC^2=BC^2-AB^2=5^2-4^2=3^2
Suy ra AC=3 cm
Cho tam giác ABC vuông tại A, kẻ phân giác BD của hóc B ( D Thuộc AC), kẻ AH vuông góc với BD ( H thuộc BD), AH czwst BC tại E.
a) Chứng minh: Tam giác BHA= tam giác BHE
b) Vhuwngs minh ED vuông góc với BD
c) Chứng minh: AD < DC
d) Kwe AK vuông góc với BC( K thuộc BC). Chứng minh: AE là phân giác của góc CAK
Tam giác ABC ( AB < AC ), kẻ phân giác AL. Từ trung điểm M của BC, kẻ đường vuông góc vs AL ( đường này cắt AC ở E , cắt AB ở D ).
a) Chứng minh AD = AE
b) Kẻ BB' // ED. Chứng minh B'E = EC = BD
c) Chứng minh 2AD = AC +AB
d) Tính góc BMD theo góc B, góc C
Bài 1: Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lất điểm D sao cho BD = BA. Kẻ Ah vuông góc với BC, kẻ DK vuông góc với AC.
a) Chứng minh: góc BAD = góc BDA
b) Chứng minh: AD là phân giác của góc HAC
c) Chứng minh: AK = AH
d) Chứng minh: AB + AC < BC + AH
Bài 2: Cho tam giác cân ABC có AB = AC = 5 cm, BC = 8 cm. Kẻ Ah vuông góc với BC ( H thuộc BC )
a) Chứng minh: HB = HC và góc CAH = góc BAH
b) AH = ?
c) Kẻ HD vuông góc với AB ( D thuộc AB ), kẻ HE vuông góc với AC ( E thuộc AC ). Chứng minh: DE song song BC
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E.Kẻ EK vuông góc với AB ( K thuộc AB). Chứng minh AC =AK và AE CK Chứng minh KA = KB. Chứng minh EB > AC. Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
Cho tam giác ABC vuông tại A, tia phân giác của góc AB cắt AC tại D, lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh tam giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. Chứng minh ED = AM.
cho tam giác ABC đường trung trực của BC cắt cạnh AC tại E cắt phân giác của góc A tại m kẻ MH vuông góc vs AB tại H , MK vuông góc vs AC tại kK
a, chứng minh MH = MK
b. mk cắt BC tại I . chứng minh EI vuông góc vs MN
c, chứng minh BH = CK
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
=>MH=MK
c: Xét ΔMHB vuông tại H và ΔMKC vuông tại K có
MH=MK(cmt)
MB=MC(M nằm trên đường trung trực của BC)
Do đó: ΔMHB=ΔMKC
=>BH=CK
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt
BC ở E. Kẻ EK vuông góc với AB (K thuộc AB).
a) Chứng minh AC =AK và AE CK
b) Chứng minh KA = KB.
c) Chứng minh EB > AC.
d) Kẻ BD vuông góc với tia AE (D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng)