a: XétΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Xét ΔBME vuông tại E và ΔBCA vuông tại A có
BE=BA
\(\widehat{MBE}\) chung
Do đó: ΔBME=ΔBCA
Suy ra: \(\widehat{BME}=\widehat{BCA}\) và ME=CA
a: XétΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Xét ΔBME vuông tại E và ΔBCA vuông tại A có
BE=BA
\(\widehat{MBE}\) chung
Do đó: ΔBME=ΔBCA
Suy ra: \(\widehat{BME}=\widehat{BCA}\) và ME=CA
Cho tam giác ABC vuông tại A, tia phân giác của góc AB cắt AC tại D, lấy E trên cạnh BC sao cho BE = AB.
a) Chứng minh tam giác ABD = tam giác EBD.
b) Tia ED cắt BA tại M. Chứng minh ED = AM.
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Cho tâm giác ABC vương tải A co góc B =60°
A)tính góc C
B)trên cạnh BC lấy điểm Đ sao cho BD=BA.tia phân giác của góc B cắt cạnh AC tại E. Chứng minh tam giác BEA= tam giác BED
C)qua C vẽ đường thẳng vuông góc với BE tại H . Tia CH cắt đường thẳng AB tại F. Chứng minh tam giác BHF= tam giác BHC
D) chứng minh ba điểm D,E,F thẳng hàng
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Cho tam giác ABC vuông tại A, có góc B = 600
a) Tìm số đo góc C
b) Tia phân giác của góc B cắt cạnh AC tại D. Kẻ DE vuông góc với BC tại E. Chứng minh: ΔABD = ΔEBD
cho tam giác ABC vuông tại A. tia phân giác của góc B cắt cạnh AC tại D
a cho biết ACB =40 ĐỘ .TÍNH số đo góc ABD
b Trên cạnh BC lấy điểm E sao cho BE=BA chứng minh tam giac BAD=BED và DE VUÔNG GÓC BC
c gọi F là giao điểm của BA VÀ ED chứng minh rằng tam giác ABC = tam giác EBF
d Vẽ CK vuông góc với BD tại K chứng minh rằng ba điểm K F C thẳng hàng
cho tam giác ABC vuông tại A, AB<AC. lấy điểm D sao cho A là trung điểm của BD
a) chứng minh CA là tia phân giác của góc BCD
b) vẽ BE vuông góc với CD tại E, BE cắt CA tại I. Vẽ IF vuông góc với CB tại F. chứng minh tam giác CEF cân và EF song song với DB
c) so sánh IE và IB
d) tìm điều kiện của tam giác DBC để tam giác BEF cân tại F