Giải pt: \(4x^2\)+\(12x\)=\(9\)+\(7x\sqrt{4x-3}\)
Giải các pt sau( phương pháp đạt ẩn phụ đưa về pt đẳng cấp )
1. \(4x^2+12x=9=7x\sqrt{4x-3}\)
giải pt: \(\sqrt{4x^2-12x+9}+3=2x\)
\(\sqrt{4x^2-12x+9}+3=2x\)
<=>\(\sqrt{4x^2-12x+9}=2x-3\)
<=>\(4x^2-12x+9=\left(2x-3\right)^2\)
<=>\(4x^2-12x+9=4x^2-12x+9\)
<=>\(4x^2-12x+9-4x^2+12x-9=0\)
<=>0=0( luôn đúng )
=> phương trình trên có vô số nghiệm
Vậy phương trình trên có vô số nghiệm
Ta có: \(\sqrt{4x^2-12x+9}+3=2x\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
\(\Leftrightarrow2x-3\ge0\)
hay \(x\ge\dfrac{3}{2}\)
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
a/ \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
Vậy...
b/ \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
\(4x^2+12x=7x\sqrt{4x-3}+9\)
1/ \(\sqrt{7x^2+20x-86}+x\sqrt{31-4x-x^2}=x+1\)
2/ \(\sqrt[3]{\frac{12x^2+12x+9}{4}}=x+\sqrt[4]{\frac{4x^3-2}{3}}\)
em mới lớp 10, nên anh chị, thầy cô giải cách nào dễ hiểu giúp em nha
Giải PT:
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
a)
ĐKXĐ: \(x> \frac{-5}{7}\)
Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)
\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)
Vậy......
b) ĐKXĐ: \(x\geq 5\)
\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)
(hoàn toàn thỏa mãn)
Vậy..........
c) ĐK: \(x\in \mathbb{R}\)
Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)
\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)
Khi đó:
\(2x-x^2+\sqrt{6x^2-12x+7}=0\)
\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)
\(\Leftrightarrow 7-a^2+6a=0\)
\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)
\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\) vì \(a\geq 0\)
\(\Rightarrow 6x^2-12x+7=a^2=49\)
\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)
(đều thỏa mãn)
Vậy..........
d)
ĐKXĐ: \(x^2+5x+2\ge 0\)
\((x+1)(x+4)-3\sqrt{x^2+5x+2}=6\)
\(\Leftrightarrow (x^2+5x+4)-3\sqrt{x^2+5x+2}=6\)
Đặt \(\sqrt{x^2+5x+2}=a(a\geq 0)\Rightarrow x^2+5x+2=a^2\)
PT trở thành:
\(a^2+2-3a=6\)
\(\Leftrightarrow a^2-3a-4=0\Leftrightarrow (a-4)(a+1)=0\)
\(\Rightarrow a=4\) vì \(a\geq 0\)
\(\Rightarrow x^2+5x+2=a^2=16\)
\(\Rightarrow x^2+5x-14=0\Leftrightarrow (x-2)(x+7)=0\)
\(\Rightarrow \left[\begin{matrix} x=2\\ x=-7\end{matrix}\right.\) (đều thỏa mãn)
Vậy................
Giải pt sau:
1/ \(\sqrt{4x^2-12x+9}=3-2x\)
2/ \(\sqrt{x^2-2\sqrt{2}x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
1: Ta có: \(\sqrt{4x^2-12x+9}=3-2x\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(3-2x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(3-2x\right)^2=0\)
\(\Leftrightarrow\left[\left(2x-3\right)-\left(3-2x\right)\right]\left[\left(2x-3\right)+\left(3-2x\right)\right]=0\)
\(\Leftrightarrow\left(2x-3-3+2x\right)\left(2x-3+3-2x\right)=0\)
\(\Leftrightarrow\left(4x-6\right)\cdot0=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
2) Ta có: \(\sqrt{x^2-2\cdot\sqrt{2}\cdot x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8-2\cdot2\sqrt{2}\cdot1+1}-\sqrt{1+2\cdot1\cdot\sqrt{2}+2}\)
\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\left|\sqrt{8}-1\right|-\left|1+\sqrt{2}\right|\)
\(\Leftrightarrow\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{8}-1-1-\sqrt{2}\)
\(\Leftrightarrow\left|x-\sqrt{2}\right|=\sqrt{2}-2\)(*)
Trường hợp 1: \(x\ge\sqrt{2}\)
(*)\(\Leftrightarrow x-\sqrt{2}=\sqrt{2}-2\)
\(\Leftrightarrow x-\sqrt{2}-\sqrt{2}+2=0\)
\(\Leftrightarrow x-2\sqrt{2}+2=0\)
\(\Leftrightarrow x=2\sqrt{2}-2\)(loại)
Trường hợp 2: \(x< \sqrt{2}\)
(*)\(\Leftrightarrow\sqrt{2}-x=\sqrt{2}-2\)
\(\Leftrightarrow\sqrt{2}-x-\sqrt{2}+2=0\)
\(\Leftrightarrow2-x=0\)
hay x=2(loại)
Vậy: S=∅
\(1.4x^2-12x+9=9-12x+4x^2\)
\(0x=0\)
Pt tm với mọi x
2. Giải PT:
a) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow9x-7x=5+7\)
\(\Leftrightarrow2x=12\)
\(\Leftrightarrow x=6\)
\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\)
Giải pt sau:
1/ \(\sqrt{4x^2-12x+9}=3-2x\)
2/ \(\sqrt{x^2-2\sqrt{2}x+2}=\sqrt{9-4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)