Ta có ; \(4x^2+12x=9+7x\sqrt{4x-3}\)(ĐKXĐ : \(x\ge\frac{3}{4}\))
\(\Leftrightarrow4x^2+5x-9=7x\left(\sqrt{4x-3}-1\right)\)
Xét vế trái : \(4x^2+5x-9=4\left(x-1\right)\left(x+\frac{9}{4}\right)=\left[\left(4x-3\right)-1\right]\left(x+\frac{9}{4}\right)=\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)\)
Suy ra phương trình : \(\left(\sqrt{4x-3}-1\right)\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)=7x\left(\sqrt{4x-3}-1\right)\)
\(\Leftrightarrow\left(\sqrt{4x-3}-1\right)\left[\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{4x-3}-1=0\\\left(\sqrt{4x-3}+1\right)\left(x+\frac{9}{4}\right)-7x=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)(TMDK)
Bài này liên hợp
ĐKXĐ: \(x\ge\frac{3}{4}\)
\(4x^2+12x-16-7x\sqrt{4x-3}+7=0\)
\(\Rightarrow\frac{\left(4x^2+12x\right)^2-16^2}{4x^2+12x+16}-\frac{\left(7x\sqrt{4x-3}\right)^2-7^2}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+16}-\frac{196x^3-147x^2-49}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\frac{16\left(x-1\right)\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{\left(x-1\right)\left(4x^2+x+1\right)49}{7x\sqrt{4x-3}+7}=0\)
\(\Rightarrow\left(x-1\right)\left[\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}\right]=0\)
Vì \(\frac{16\left(x+4\right)\left(x^2+3x+4\right)}{4x^2+12x+6}-\frac{49\left(4x^2+x+1\right)}{7x\sqrt{4x-3}+7}>0\)
=> x - 1 = 0 => x = 1
Vậy x = 1
Cảm ơn 2 bạn nhìu. Nhưng mà sao kết quả # nhau thế?????
mk nghĩ bài này bạn ngọc làm đúng rùi vì cách nhân liên hợp của vĩ mk thấy cái trong ngoặc chưa chắc đã khác 0( MK NGHĨ VẬY)