Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 21:47

Sửa đề: BF và CE cắt nhau tại H

a) Xét (O) có 

ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBEC vuông tại E(Định lí)

\(\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow CE\perp AB\)

\(\Leftrightarrow\widehat{AEC}=90^0\)

hay \(\widehat{AEH}=90^0\)

Xét (O) có 

ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))

BC là đường kính(gt)

Do đó: ΔBFC vuông tại F(Định lí)

\(\Leftrightarrow BF\perp CF\)

\(\Leftrightarrow BF\perp AC\)

\(\Leftrightarrow\widehat{AFB}=90^0\)

hay \(\widehat{AFH}=90^0\)

Xét tứ giác AEHF có 

\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối

\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét ΔABC có 

BF là đường cao ứng với cạnh AC(cmt)

CE là đường cao ứng với cạnh AB(cmt)

BF cắt CE tại H(gt)

Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)

\(\Leftrightarrow AH\perp BC\)

hay \(AD\perp BC\)(đpcm)

Emily Nain
Xem chi tiết
Đức An
Xem chi tiết
missing you =
15 tháng 5 2021 lúc 19:08

rồi sao bạn câu hỏi là gì?:>

Đồng Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:01

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BFC=1/2*180=90 độ

=>BF vuông góc AC

góc BEC=góc BFC=90 độ

=>BEFC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

góc A chung

=>ΔAEC đồng dạng với ΔAFB

=>AE/AF=AC/AB

=>AE*AB=AF*AC

c: góc BHC=góc BOC

góc BHC+góc BAC=180 độ

=>góc BOC+góc BAC=180 độ

=>góc BAC=60 độ

=>góc KOC=60 độ

=>OK/OC=1/2

Nguyen van quan
Xem chi tiết
Nguyen van quan
5 tháng 9 2023 lúc 14:24

giúp mik với các bạn

Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 14:25

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

=>CF vuông góc AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE vuông góc AC

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại D

b: Xét tứ giác AFHE có

góc AFH+góc AEH=90+90=180 độ

=>AFHE nội tiếp đường tròn đường kính AH

I là trung điẻm của AH

c:

Xét tứ giác BFHD có

góc BFH+góc BDH=180 độ

=>BFHD nội tiếp

=>góc DFH=góc DBH=góc EBC

góc IFD=góc IFH+góc DFH

=góc IHF+góc EBC

=góc DHC+góc EBC

=90 độ-góc FCB+góc EBC

=90 độ

=>IF là tiếp tuyến của (O)

Xét ΔIFD và ΔIED có

IF=IE

FD=ED

ID chung

=>ΔIFD=ΔIED

=>góc IED=góc IFD=90 độ

=>IE là tiếp tuyến của (O)

Huy Gia
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 20:31

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

vungcodung
Xem chi tiết
Linh Linh
30 tháng 5 2021 lúc 22:43

xét ΔMDC và ΔMBD có

∠M chung

∠MBD=∠MDC=\(\dfrac{1}{2}sđ\stackrel\frown{DC}\)

⇒ΔΔMDC ∼ ΔMBD (g.g)

\(\dfrac{MD}{MB}=\dfrac{MC}{MD}\)⇒MD2=MC.MB

Mini Gaming
Xem chi tiết
Nguyễn Quỳnh Hương
Xem chi tiết