( x +\(\frac{1}{2}\))2 = 9
Những phương trình nào sau đây là phương trình chính tắc của hypebol ?
a) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\) b) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{9} = 1\) c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{64}} = 1\) d) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{9} = 1\)
Những phương trình là phương trình chính tắc của (H) là: b), c), d).
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\frac{x+2}{x+1}-\frac{1}{x-2}=1-\frac{3}{x^2-x-2}\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)
\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)
Vậy \(x=\frac{-1}{4}\)
1, \(\frac{x^2}{3+\sqrt{9-x^2}}+\frac{1}{12-4\sqrt{9-x^2}}=1\)
2, \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-1=0\)
3, \(x+\frac{x}{\sqrt{x^2-1}}=2\sqrt{2}\)
1/ Đặt \(\sqrt{9-x^2}=a\ge0\)
\(\Rightarrow\frac{9-a^2}{3+a}+\frac{1}{12-4a}=1\)
\(\Leftrightarrow4a^2-20a+25=0\)
\(\Leftrightarrow a=\frac{5}{2}\)
\(\Rightarrow\sqrt{9-x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2=\frac{11}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\sqrt{11}}{2}\\x=\frac{\sqrt{11}}{2}\end{cases}}\)
2/ \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-1=0\)
\(\Leftrightarrow\frac{9+2x^2}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)
Đặt \(\frac{x}{\sqrt{2x^2+9}}=a\)
\(\Rightarrow\frac{1}{a^2}+2a-3=0\)
\(\Leftrightarrow2a^3-3a^2+1=0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)=0\)
Làm nốt nhé
3/ \(x+\frac{x}{\sqrt{x^2-1}}=2\sqrt{2}\)
\(\Leftrightarrow x-\sqrt{2}+\frac{x-\sqrt{2x^2-2}}{\sqrt{x^2-1}}=0\)
\(\Leftrightarrow x-\sqrt{2}+\frac{2-x^2}{\sqrt{x^2-1}.\left(x+\sqrt{2x^2-2}\right)}=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+\frac{\sqrt{2}+x}{\sqrt{x^2-1}.\left(x+\sqrt{2x^2-2}\right)}\right)=0\)
\(\Leftrightarrow x=\sqrt{2}\)
a)\(\frac{7}{x}<\frac{x}{4}<\frac{10}{x}\)
b) Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\). Chứng tỏ: \(\frac{8}{9}>A>\frac{2}{5}\)
Giải:
a) \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\)
\(\Rightarrow7< \dfrac{x^2}{4}< 10\)
\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6\)
b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\)
\(...\)
\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\)
Từ (1) và (2), ta có:
\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)
\(a)(\frac{9}{x^3-9x}+\frac{1}{x+3}):(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}) b)\frac{x+1}{x+2}(\frac{x+2}{x+3}:\frac{x+3}{x+1}) c)\frac{8}{(x^2+3)(x^2+3)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
Phương trình nào sau đây là phương trình chính tắc của đường elip?
A. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\)
B. \(\frac{{{x^2}}}{1} + \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1\)
c ) \(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+\frac{-1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\frac{\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\frac{x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
Giải phương trình
a, \(\frac{1}{4x^2-12x+9}-\frac{3}{9-4x^2}=\frac{4}{4x^2+12x+9}\)
b, \(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\)
ai giúp mình câu (a) với ạ
ĐKXĐ: \(x\ne\pm\frac{3}{2}\)
\(\frac{1}{\left(2x-3\right)^2}+\frac{3}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x+3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{\left(2x-3\right)^2}-\frac{1}{\left(2x-3\right)\left(2x+3\right)}+\frac{4}{\left(2x-3\right)\left(2x+3\right)}-\frac{4}{\left(2x-3\right)^2}=0\)
\(\Leftrightarrow\frac{1}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)-\frac{4}{2x-3}\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{2x-3}-\frac{4}{2x+3}\right)\left(\frac{1}{2x-3}-\frac{1}{2x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x-3\left(vn\right)\\2x+3=4\left(2x-3\right)\Rightarrow x=\frac{5}{2}\end{matrix}\right.\)
Tìm x, biết:
a)\(\frac{x+1}{2}=\frac{8}{x+1}\)
b)\(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
a. \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow\left(x+1\right)^2=2^4\)
\(\Leftrightarrow\left(x+1\right)=2^2\)
\(\Leftrightarrow\left(x+1\right)=4\)
\(\Leftrightarrow x=4-1=3\)
b. \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
\(\Leftrightarrow x:\left(\frac{10}{2}-\frac{3}{2}\right)=\frac{0,4+0,2-0,18}{1,6+0,8-0,72}\)
\(\Leftrightarrow x:\frac{7}{2}=\frac{\frac{21}{50}}{\frac{42}{25}}\)
\(\Leftrightarrow x=\frac{\frac{21}{50}}{\frac{42}{25}}.\frac{7}{2}\Leftrightarrow x=\frac{1}{4}.\frac{7}{2}=\frac{7}{8}\)
a ) \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=2.8\)
\(\Rightarrow\left(x+1\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4-1\\x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Dấu " \(\orbr{\begin{cases}\\\end{cases}}\)là hoặc nha !!!
a)\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=8\times2=16\)
\(\Rightarrow\left(x+1\right)^2=4^2\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1=3\)
b)tớ ko biết làm . ~ sorry~
~chuk bn hok giỏi~