\(\dfrac{3}{4}+x=\dfrac{19}{20}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\dfrac{x+1}{1}+\dfrac{2x+3}{3}+\dfrac{3x+5}{5}+...+\dfrac{10x+19}{19}=12+\dfrac{4}{3}+\dfrac{6}{5}+...+\dfrac{20}{19}\)
\(\dfrac{x+1}{1}+\dfrac{2x+3}{3}+\dfrac{3x+5}{5}+...+\dfrac{10x+19}{19}=12+\dfrac{4}{3}+\dfrac{6}{5}+...+\dfrac{20}{19}\)
\(x+1+\dfrac{2x}{3}+1+\dfrac{3x}{5}+1+...+\dfrac{10x}{19}+1-12-\dfrac{4}{3}-\dfrac{6}{5}-...-\dfrac{20}{19}=0\)
\(x+\dfrac{2x}{3}-\dfrac{4}{3}+\dfrac{3x}{5}-\dfrac{6}{5}+...+\dfrac{10x}{19}-\dfrac{20}{19}+10-12=0\)
\(x-2+\dfrac{2x-4}{3}+\dfrac{3x-6}{5}+...+\dfrac{10x-20}{19}=0\)
\(x-2+\dfrac{2\left(x-2\right)}{3}+\dfrac{3\left(x-2\right)}{5}+...+\dfrac{10\left(x-2\right)}{19}=0\)
\(\left(x-2\right)\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)=0\)
Ta thấy \(\left(\dfrac{2}{3}+\dfrac{3}{5}+...+\dfrac{10}{19}\right)>0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
1)\(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
2)\(\dfrac{ }{\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}}\)
3)\(\dfrac{ }{\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}}\)
4)\(\dfrac{ }{\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}}\)
1) \(\dfrac{1}{2}+\dfrac{13}{19}-\dfrac{4}{9}+\dfrac{6}{19}+\dfrac{5}{18}\)
\(=\dfrac{1}{2}+\left(\dfrac{13}{19}+\dfrac{6}{19}\right)-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{3}{2}-\dfrac{4}{9}+\dfrac{5}{18}\)
\(=\dfrac{19}{18}+\dfrac{5}{18}\)
\(=\dfrac{24}{18}\)
\(=\dfrac{4}{3}\)
2) \(\dfrac{-20}{23}+\dfrac{2}{3}-\dfrac{3}{23}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\left(-\dfrac{20}{23}-\dfrac{3}{23}\right)+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-1+\dfrac{2}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=-\dfrac{1}{3}+\dfrac{2}{5}+\dfrac{7}{15}\)
\(=\dfrac{1}{15}+\dfrac{7}{15}\)
\(=\dfrac{8}{15}\)
3) \(\dfrac{4}{3}+\dfrac{-11}{31}+\dfrac{3}{10}-\dfrac{20}{31}-\dfrac{2}{5}\)
\(=\left(\dfrac{-11}{31}-\dfrac{20}{31}\right)+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=-1+\dfrac{4}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}+\dfrac{3}{10}-\dfrac{2}{5}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
\(=\dfrac{7}{30}\)
4) \(\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{2}{11}-\dfrac{5}{7}.\dfrac{14}{11}\)
\(=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\)
\(=\dfrac{5}{7}.-\dfrac{7}{11}\)
\(=-\dfrac{35}{77}\)
\(=-\dfrac{5}{11}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{2}{18}+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}}\)
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
A=\(-\dfrac{68}{123}\)x\(-\dfrac{23}{79}\)
B=\(-\dfrac{14}{79}\)x\(-\dfrac{68}{7}\)x\(-\dfrac{46}{123}\)
C=\(-\dfrac{4}{19}\)x\(-\dfrac{3}{19}\)x\(-\dfrac{2}{19}\) ... \(\dfrac{2}{19}\)x\(\dfrac{3}{19}\)x\(\dfrac{4}{19}\)
a)So sánh A,B,C
b)Tính B:A
a) Ta có:
\(A=\dfrac{-68}{123}\cdot\dfrac{-23}{79}=\dfrac{68}{123}\cdot\dfrac{23}{79}\)
\(B=\dfrac{-14}{79}\cdot\dfrac{-68}{7}\cdot\dfrac{-46}{123}=-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)\)
\(C=\dfrac{-4}{19}\cdot\dfrac{-3}{19}\cdot...\cdot\dfrac{0}{19}\cdot...\cdot\dfrac{3}{19}\cdot\dfrac{4}{19}=0\)
Suy ra A là số hữu tỉ dương, B là số hữu tỉ âm và C là 0.
Vậy A > C > B.
b) Ta có:
\(\dfrac{B}{A}=\dfrac{-\left(\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\right)}{\dfrac{68}{123}\cdot\dfrac{23}{79}}=-\dfrac{14}{79}\cdot\dfrac{68}{7}\cdot\dfrac{46}{123}\cdot\dfrac{123}{68}\cdot\dfrac{79}{23}\)
\(\dfrac{B}{A}=-\dfrac{14\cdot68\cdot46\cdot123\cdot79}{79\cdot7\cdot123\cdot68\cdot23}=-\left(2\cdot2\right)=-4\)
Vậy B : A = -4
Tính:
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+.....\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{19}+\dfrac{1}{20}}\)
Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)
\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)
Thế lại bài toán ta được
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)
Ta có
\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)
Thế vào ta có:
\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)
1) Rút gọn
A =\(\dfrac{\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+.......+\dfrac{18}{2}+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.......+\dfrac{1}{19}+\dfrac{1}{20}}\)
2) Tìm x
a/ \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x.\left(x+1\right)}=\dfrac{2016}{2017}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)
Vậy \(x=2016\)
cho \(x=\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right).\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}+\dfrac{3}{35}\right).\dfrac{-4}{3}}\) . Tính \(P=\sqrt{120x+39}\)
\(x=\dfrac{\left(\dfrac{18}{60}-\dfrac{16}{60}-\dfrac{21}{60}\right)\cdot\dfrac{5}{19}}{\left(\dfrac{5}{70}+\dfrac{10}{70}+\dfrac{6}{70}\right)\cdot\dfrac{-4}{3}}\)
\(=\dfrac{\dfrac{-19}{60}\cdot\dfrac{5}{19}}{\dfrac{3}{10}\cdot\dfrac{-4}{3}}=\dfrac{-5}{60}:\dfrac{-4}{10}=\dfrac{1}{12}\cdot\dfrac{5}{2}=\dfrac{5}{24}\)
Khi x=5/24 thì \(P=\sqrt{120\cdot\dfrac{5}{24}+39}=\sqrt{25+39}=8\)
BT1: Tìm x, biết
2)\(2+\dfrac{5}{7}+\left(\dfrac{\dfrac{3}{19}+\dfrac{3}{23}-\dfrac{3}{28}}{\dfrac{5}{19}+\dfrac{5}{23}-\dfrac{5}{28}}\right).x=\dfrac{20}{7}\)
2)
\(2+\dfrac{5}{7}+\left(\dfrac{\dfrac{3}{19}+\dfrac{3}{23}-\dfrac{3}{28}}{\dfrac{5}{19}+\dfrac{5}{23}-\dfrac{5}{28}}\right)\cdot x=\dfrac{20}{7}\\ \left[\dfrac{3\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}{5\cdot\left(\dfrac{1}{19}+\dfrac{1}{23}-\dfrac{1}{28}\right)}\right]\cdot x=\dfrac{20}{7}-\dfrac{5}{7}-2\\ \dfrac{3}{5}x=\dfrac{15}{7}-2\\ \dfrac{3}{5}x=\dfrac{1}{7}\\ x=\dfrac{5}{21}\)
I = \(\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}\)
J = \(\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}\)
K = \(\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}\)
L = \(\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}\)
\(I=\dfrac{5}{4}+\dfrac{-1}{3}-\dfrac{5}{-24}=\dfrac{9}{8}\)
\(J=\dfrac{-19}{-9}+\dfrac{4}{-11}-\dfrac{-2}{3}=\dfrac{239}{99}\)
\(K=\dfrac{-5}{6}-\dfrac{7}{12}+\dfrac{-3}{4}=-\dfrac{13}{6}\)
\(L=\dfrac{-3}{20}+\dfrac{1}{5}-\dfrac{-5}{3}=\dfrac{103}{60}\)