Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sakura Kinomoto
Xem chi tiết
Phan Nghĩa
13 tháng 10 2017 lúc 21:52

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

Dương Thị Thu Ngọc
Xem chi tiết
Ánh Thuu
23 tháng 10 2018 lúc 13:26

Ta có :

\(5n^3+15n^2+10\)

= \(5n.\left(n^2+3n+2\right)\)

= \(5n.\left(n^2+n+2n+2\right)\)

=\(5n.\left(n.\left(n+1\right)+2.\left(n+1\right)\right)\)

=5n.\(\left(n+1\right).\left(n+2\right)\)

Vì n.(n+1).(n+2) lac tích ba số tự nhiên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1 => n.(n+1).(n+2) chia hết cho 6

=> 5.(n+1).(n+2) chia hết cho 30

Hay \(5n^3+15n^2+10n\) chia hết cho 30

Nguyễn Lê Phước Thịnh
17 tháng 6 2022 lúc 22:41

\(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)\)

\(=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

hay \(5n\left(n+1\right)\left(n+2\right)⋮30\)

Nguyễn Hoàng Linh
Xem chi tiết
Nguyễn Xuân Tiến 24
15 tháng 10 2017 lúc 20:52

Trước tiên bn nên phân tích đa thức thành nhân tử để dễ dàng chứng minh hơn

Ta có: \(A=5n^3+15n^2+10n=5n^3+5n^2+10n^2+10n\)\(=5n^2\left(n+1\right)+10n\left(n+1\right)=\left(n+1\right)\left(5n^2+10n\right)\)\(=5.n\left(n+1\right)\left(n+2\right)\)

Do \(n\left(n+1\right)\left(n+2\right)⋮6\) \((\forall n\in Z)\) (bn tự cm)

\(\Rightarrow A\) \(⋮30\left(\forall n\in Z\right)\)

ngọc phan
Xem chi tiết
Huỳnh Khánh Ly
28 tháng 9 2016 lúc 15:33

mình cần câu hỏi này

Tattoo mà ST vẽ lên thôi
Xem chi tiết
Trần Quốc Lộc
13 tháng 10 2017 lúc 12:48

Ôn tập phép nhân và phép chia đa thức

Trần Quốc Lộc
13 tháng 10 2017 lúc 18:09

Ôn tập phép nhân và phép chia đa thức

Ha Thi Kim Tuyen
Xem chi tiết
Nghuyễn Đình vIỆT hƯNG
4 tháng 8 2016 lúc 9:26

a n.n.n+5n chia het cho 6

Pham Van Hung
25 tháng 7 2018 lúc 14:30

a, n^3 +5n

= n^3 -n+ 6n

= n(n^2-1)+ 6n

=n(n-1)(n+1) +6n

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6

Mặt khác, 6n chia hết cho 6.

Suy ra: n(n-1)(n+1) +6n chia hết cho 6

Vậy n^3 + 5n chia hết cho 6

b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.

c, 5n^3 + 15n^2 +10n

= 5n(n^2 +3n+2)

= 5n(n+1)(n+2)

n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6

Chúc bạn học tốt.

hoa bui
Xem chi tiết
Phạm Thị Mỹ Dung
19 tháng 10 2017 lúc 21:42

\(Ta\)\(có\)\(5n^3+15n+10n=5n\left(n^2+3n+2\right)\)

                 \(=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)

                 \(=5n\left(n+1\right)\left(n+2\right)\)

\(Vì\)\(n\left(n+1\right)\left(n+2\right)⋮6\)\(và\) \(5⋮5\)

\(nên\) \(5n\left(n+1\right)\left(n+2\right)⋮\left(5.6\right)\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\left(đpcm\right)\)

hoa bui
21 tháng 10 2017 lúc 19:41

bạn giúp mk bài 2 nx

Nobi Nobita
18 tháng 10 2020 lúc 10:10

Bài 1:

 \(5n^3+15n^2+10n=5n\left(n^2+3n+2\right)=5n\left[\left(n^2+n\right)+\left(2n+2\right)\right]\)

\(=5n\left[n\left(n+1\right)+2\left(n+1\right)\right]=5n\left(n+1\right)\left(n+2\right)\)

Vì \(n\)\(n+1\)là 2 số nguyên liên tiếp 

\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮2\)(1)

Vì \(n\)\(n+1\)\(n+2\)là 3 số nguyên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\)(2)

Vì \(\left(2;3\right)=1\)(3)

Từ (1), (2) và (3) \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\)

\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\)

\(\Rightarrow5n^3+15n^2+10n⋮30\)( đpcm )

Bài 2:

Gọi 4 số nguyên dương liên tiếp là \(a\)\(a+1\)\(a+2\)\(a+3\)\(a\inℕ^∗\))

Theo bài, ta có: \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)=120\)

\(\Leftrightarrow a\left(a+3\right)\left(a+1\right)\left(a+2\right)=120\)

\(\Leftrightarrow\left(a^2+3a\right)\left(a^2+3a+2\right)=120\)

Đặt \(a^2+3a+1=t\)

\(\Rightarrow\left(t-1\right)\left(t+1\right)=120\)\(\Leftrightarrow t^2-1-120=0\)

\(\Leftrightarrow t^2-121=0\)\(\Leftrightarrow\left(t-11\right)\left(t+11\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-11=0\\t+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=11\\t=-11\end{cases}}\)

+) TH1: Nếu \(t=-11\)\(\Rightarrow a^2+3a+1=-11\)

\(\Leftrightarrow a^2+3a+12=0\)( không có nghiệm nguyên )

+) TH2: Nếu \(t=11\)\(\Rightarrow a^2+3a+1=11\)

\(\Leftrightarrow a^2+3a-10=0\)\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2=0\\a+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\a=-5\end{cases}}\)

Vì \(a\inℕ^∗\)\(\Rightarrow a=2\)thỏa mãn đề bài 

Vậy 4 số nguyên dương cần tìm là 2, 3, 4, 5

Khách vãng lai đã xóa
Huỳnh Khánh Ly
Xem chi tiết
Yêu nhầm yêu lại lại Yêu...
28 tháng 9 2016 lúc 16:06

5n^3 + 15n^2 +10n

=(5n^3 + 15n^2+ 10n) 

= 30n^6 chia hết cho 30

TFboys_Lê Phương Thảo
28 tháng 9 2016 lúc 16:26

Ta có : 5n3+15n2+10n

=5n(n2+3n+2)

Ta thấy : 5 chia hết cho 30 

Hay : 5n chia hết cho 30

Vậy đpcm

Khanh Hoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2022 lúc 22:22

a: \(\Rightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)

=>n-10=0

=>n=10

b: \(A=5n\left(n^2+3n+2\right)=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là 3 số liên tiếp

nên n(n+1)(n+2) chia hết cho 3!=6

=>A chia hết cho 30