Tìm m để phương trình sau có nghiệm:
a) 2mx2 +(m-1)x -3m+1=0
b) (m-1)x2 +(2m+1)x + m-3=0
cho phương trình : x^2-2(m-1)x+2m-5=0. tìm các giá trị của m để phương trình có 2 nghiệm thoả mãn 9x1^2-2mx1+2m-1)(x2^2-2mx2+2m-1)<0
Tìm m để phương trình 2 m x 2 – ( 2 m + 1 ) x − 3 = 0 có nghiệm là x = 2
A. m = − 5 4
B. m = 1 4
C. m = 5 4
D. m = − 1 4
Thay x = 2 vào phương trình 2mx2 – (2m + 1)x − 3 = 0
ta được: 2m.22 – (2m + 1).2 − 3 = 0
⇔ 4m – 5 = 0 ⇔ m = 5 4
Vậy m = 5 4 là giá trị cần tìm
Đáp án cần chọn là: C
Tìm m để phương trình 2 m x 2 - ( 2 m + 1 ) x - 3 = 0 có nghiệm là x = 2
A. m = - 5 4
B. m = 1 4
C. m = 5 4
D. m = - 1 4
Tìm m để phương trình x^2-(3m-1)x+2m^2-m=0 có nghiệm x1, x2 thỏa mãn x1=x2^2
\(PT\Leftrightarrow\left(x-2m+1\right)\left(x-m\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2m-1\\x=m\end{matrix}\right.\).
+) TH1: \(\left\{{}\begin{matrix}x_1=2m-1\\x_2=m\end{matrix}\right.\Rightarrow m^2=2m-1\Leftrightarrow m=1\).
+) TH2: \(\left\{{}\begin{matrix}x_1=m\\x_2=2m-1\end{matrix}\right.\Rightarrow\left(2m-1\right)^2=m\Leftrightarrow\left(m-1\right)\left(4m-1\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{4}\end{matrix}\right.\).
Vậy...
cho phương trình :\(x^2-\left(2m-3\right)x+m^2-3m=0\)0
Tìm m để phương trình luôn có nghiệm x1,x2 để 1<x1<x2
từ gt => (x1-1)(x2-1) >0
và pt có 2 nghiệm phân biệt
Vì 1 < x1 < x2 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\x< 0\left(h\right)x>3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9>0\left(LuonĐúng\right)\\x>3\end{cases}}\)
\(\Leftrightarrow x>3\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Vì \(1< x_1< x_2\Rightarrow\hept{\begin{cases}x_1-1>0\\x_2-1>0\end{cases}}\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-1\right)>0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1>0\)
\(\Leftrightarrow m^2-3m-2m+3+1>0\)
\(\Leftrightarrow m^2-5m+4>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< 1\\m>4\end{cases}}\)
Mà m > 3 nên m > 4
Vậy m > 4
Tìm m để phương trình sau có nghiệm:
a. \(x^2+2x+m-5=0\)
b. \(x^2+2mx+m^2-2m+5=0\)
\(a,\Leftrightarrow\Delta'=1-\left(m-5\right)\ge0\\ \Leftrightarrow6-m\ge0\Leftrightarrow m\le6\\ b,\Leftrightarrow\Delta'=m^2-\left(m^2-2m+5\right)\ge0\\ \Leftrightarrow2m-5\ge0\Leftrightarrow m\ge\dfrac{5}{2}\)
a. x2 + 2x + m - 5 =0
b2 - 4ac = 2 bình - 4. 1 . (m - 5 ) = 0
4 - 4m + 20 = 0
-4m + 24 =0
suy ra m = - 6
câu cx y như vậy :))))
Biết rằng phương trình m x 2 + (3m − 1)x + 2m − 1 = 0 (m ≠ 0) luôn có nghiệm x 1 ; x 2 với mọi m. Tìm x 1 ; x 2 theo m
A. x 1 = − 1 ; x 2 = 1 − 2 m m
B. x 1 = 1 ; x 2 = 2 m − 1 m
C. x 1 = 1 ; x 2 = 1 − 2 m m
D. x 1 = − 1 ; x 2 = 2 m − 1 m
Phương trình m x 2 + (3m − 1)x + 2m − 1 = 0 (m 0) có
a = m; b = 3m – 1; c = 2m – 1
Vì a – b + c = m – 3m + 1 + 2m – 1 = 0 nên phương trình có hai nghiệm
x 1 = − 1 ; x 2 = 1 − 2 m m
Đáp án: A
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m:
a. mx2 + (2m – 1)x + m + 2 = 0 b. 2x2 - (4m +3)x + 2m2 - 1 = 0
c. x2 – 2(m + 3)x + m2 + 3 = 0 d. (m + 1)x2 + 4mx + 4m +1 = 0
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
Cho phương trình ( m + 1 ) x 2 + ( 3 m - 1 ) x + 2 m - 2 = 0 . Xác định m để phương trình có hai nghiệm x 1 , x 2 mà x 1 + x 2 = 3 . Tính các nghiệm trong trường hợp đó.
Với m ≠ -1
Ta có: Δ = ( m - 3 ) 2 ≥ 0 , do đó phương trình luôn luôn có hai nghiệm x 1 , x 2
Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.